Mathematics 110 - Calculus of one variable

Trent University 2002-2003
§A Quizzes
Quiz \#1. Wednesday, 18 September, 2002. [10 minutes]
12:00 Seminar

1. Compute $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}$ or show that this limit does not exist. [5]
2. Sketch the graph of a function $f(x)$ which is defined for all x and for which $\lim _{x \rightarrow 0} f(x)=$ 1, $\lim _{x \rightarrow 2^{+}} f(x)$ does not exist, and $\lim _{x \rightarrow 2^{-}} f(x)=4$. [5]
13:00 Seminar
3. Compute $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-x+2}{x-2}$ or show that this limit does not exist. [5]
4. Sketch the graph of a function $g(x)$ which is defined for all x, and for which $\lim _{x \rightarrow 0} g(x)=$ $\infty, \lim _{x \rightarrow 2} g(x)$ does not exist, and $g(x)$ does not have an asymptote at $x=2$. [5]
Quiz \#2. Wednesday, 25 September, 2002. [10 minutes]
12:00 Seminar
5. Use the $\epsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 3}(5 x-7)=8$. [10]

13:00 Seminar

1. Use the $\epsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(3-2 x)=-1$. [10]

Quiz \#3. Wednesday, 2 October, 2002. [10 minutes]

12:00 Seminar

1. For which values of the constant c is the function

$$
f(x)= \begin{cases}e^{c x} & x \geq 0 \\ c x+1 & x<0\end{cases}
$$

continuous at $x=0$? Why? [10]

13:00 Seminar

1. For which values of the constant c is the function

$$
f(x)= \begin{cases}e^{c x} & x \geq 0 \\ c(x+1) & x<0\end{cases}
$$

continuous at $x=0$? Why? [10]

Quiz \#4. Wednesday, 9 October, 2002. [12 minutes]

12:00 Seminar

Suppose

$$
f(x)= \begin{cases}x & x<0 \\ 0 & x=0 \\ 2 x^{2}+x & x>0\end{cases}
$$

1. Use the definition of the derivative to check whether $f^{\prime}(0)$ exists and compute it if it does. [7]
2. Compute $f^{\prime}(1)$ (any way you like). [3]

13:00 Seminar

Suppose $g(x)=\frac{1}{x+1}$. Compute $g^{\prime}(x)$ using

1. the rules for computing derivatives [3], and
2. the definition of the derivative. [7]

Quiz \#5. Wednesday, 16 October, 2002. [10 minutes]
12:00 Seminar
Compute $\frac{d}{d x} \sqrt[5]{x}$ using

1. the Power Rule [2], and
2. the fact that $f(x)=\sqrt[5]{x}$ is the inverse function of $g(x)=x^{5}$. [8]

13:00 Seminar

1. Compute $\frac{d}{d x} \arccos (x)$ given that $\cos (\arccos (x))=x$ and $\cos ^{2}(x)+\sin ^{2}(x)=1$. [10]

Quiz \#6. Wednesday, 30 October, 2002. [10 minutes]
12:00 Seminar

1. Find the absolute and local maxima and minima of $f(x)=x^{3}+2 x^{2}-x-2$ on $[-2,2]$. [10]
13:00 Seminar
2. Find the absolute and local maxima and minima of $f(x)=x^{3}-3 x^{2}-x+3$ on $[-2,2]$. [10]

Quiz \#7. Wednesday, 6 November, 2002. [15 minutes]

12:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of $f(x)=$ $(x-2) e^{x}$ and sketch its graph. [10]

13:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of $h(x)=$ $(x+1) e^{-x}$ and sketch its graph. [10]

Quiz \#8. Wednesday, 27 November, 2002. [15 minutes]

12:00 Seminar

1. Compute:

$$
\int_{1}^{e^{\pi}} \frac{1}{x} \sin (\ln (x)) d x
$$

2. What definite integral does the Right-hand Rule limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right) \cdot \frac{1}{n}
$$

correspond to? [5]

13:00 Seminar

1. Compute:

$$
\int_{0}^{\pi / 4} \frac{\tan (x)}{\cos ^{2}(x)} d x
$$

2. What definite integral does the Right-hand Rule limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}-1\right) \cdot \frac{1}{n}
$$

correspond to? [5]
Quiz \#9. Wednesday, 4 December, 2002. [15 minutes]
12:00 Seminar

1. Find the area of the region enclosed by $y=-x^{2}$ and $y=x^{2}-2 x$. [10]

13:00 Seminar

1. Find the area of the region enclosed by $y=(x-2)^{2}+1=x^{2}-4 x+5$ and $y=x+1$. [10]
Quiz \#10. Wednesday, 8 January, 2003. [25 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by $y=0$ and $y=\cos (x)$ for $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$ about the y-axis and find its volume. [10]
13:00 Seminar
2. Sketch the solid obtained by rotating the region bounded by $y=-1$ and $y=\cos (x)$ for $0 \leq x \leq \pi$ about the y-axis and find its volume. [10]
Quiz \#11. Wednesday, 15 January, 2003. [20 minutes]
12:00 Seminar
3. Compute $\int \frac{1}{1-x^{2}} d x$. [10]

13:00 Seminar

1. Compute $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$. [10]

Quiz \#12. Wednesday, 22 January, 2003. [20 minutes]

12:00 Seminar

1. Compute $\int \frac{3 x^{2}+4 x+2}{x^{3}+2 x^{2}+2 x} d x$. [10]

13:00 Seminar

1. Compute $\int \frac{2 x+1}{x^{3}+2 x^{2}+x} d x$. [10]

Quiz \#13. Wednesday, 29 January, 2003. [15 minutes]

12:00 Seminar

1. Compute $\int_{-\infty}^{\infty} e^{-|x|} d x$ or show that it does not converge. [10]

13:00 Seminar

1. Compute $\int_{-1}^{1} \frac{x+1}{\sqrt[3]{x}} d x$ or show that it does not converge. [10]

Quiz \#14. Wednesday, 5 February, 2003. [20 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by $x=0, y=4$ and $y=x^{2}$ for $0 \leq x \leq 2$ about the y-axis. [2]
2. Compute the surface area of this solid. [8]

13:00 Seminar

1. Sketch the curve given by the parametric equations $x=1+\cos (t)$ and $y=\sin (t)$, where $0 \leq t \leq 2 \pi$. [3]
2. Compute the arc-length of this curve using a suitable integral. [7]

Quiz \#15. Wednesday, 26 February, 2003. [20 minutes]

12:00 Seminar

1. Graph the polar curve $r=\sin (2 \theta), 0 \leq \theta \leq 2 \pi$. [4]
2. Find the area of the region enclosed by this curve. [6]

13:00 Seminar

1. Graph the polar curve $r=\cos (\theta), 0 \leq \theta \leq 2 \pi$. [4]
2. Find the arc-length of this curve. [6]

Quiz \#16. Wednesday, 5 March, 2003. [15 minutes]
12:00 Seminar
Let $a_{k}=\frac{1}{(k+1)(k+2)}$ and $s_{n}=\sum_{k=0}^{n} a_{k}$.

1. Find a formula for s_{n} in terms of n. [5]
2. Does $\sum_{k=0}^{\infty} a_{k}$ converge? If so, what does it converge to? [5]

13:00 Seminar

Let $a_{k}=\ln \left(\frac{k}{k+1}\right)$ and $s_{n}=\sum_{k=0}^{n} a_{k}$.

1. Find a formula for s_{n} in terms of n. [5]
2. Does $\sum_{k=0}^{\infty} a_{k}$ converge? If so, what does it converge to? [5]

Quiz \#17. Wednesday, 12 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges or diverges:

$$
\text { 1. } \sum_{n=0}^{\infty} e^{-n} \quad[5] \quad \text { 2. } \sum_{n=1}^{\infty} \frac{1}{\arctan (n)}
$$

13:00 Seminar

Determine whether each of the following series converges or diverges:

$$
\text { 1. } \sum_{n=0}^{\infty} \frac{1}{n+1} \quad[5] \quad \text { 2. } \sum_{n=1}^{\infty} 2^{1 / n^{2}}
$$

Quiz \#18. Wednesday, 19 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges absolutely, converges conditionally, or diverges:

$$
\text { 1. } \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n^{2}+2} \quad[5] \quad \text { 2. } \sum_{n=1}^{\infty} \frac{n!(-1)^{n}}{n^{n}}
$$

13:00 Seminar

Determine whether each of the following series converges absolutely, converges conditionally, or diverges:

$$
\text { 1. } \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(2 n^{2}+3 n+4\right)}{3 n^{2}+4 n+5} \quad \text { [5] } \quad \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{2}}
$$

Bonus Quiz. Friday, 21 March, 2003. [15 minutes]

1. A smiley face is drawn on the surface of a balloon which is being inflated at a rate of $10 \mathrm{~cm}^{3} / \mathrm{s}$. At the instant that the radius of the balloon is 10 cm the eyes are 10 cm apart, as measured inside the balloon. How is the distance between them changing at this moment? [10]

Quiz \#19. Wednesday, 26 March, 2003. [20 minutes]

12:00 Seminar

Consider the power series $\sum_{n=0}^{\infty} \frac{2^{n} x^{2 n}}{n!}$.

1. For which values of x does this series converge? [6]
2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

13:00 Seminar

Consider the power series $\sum_{n=0}^{\infty} \frac{2^{n} x^{n+1}}{n+1}$.

1. For which values of x does this series converge? [6]
2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

Quiz \#20. Wednesday, 2 April, 2003. [20 minutes]

12:00 Seminar

Let $f(x)=\sin (\pi-2 x)$.

1. Find the Taylor series at $a=0$ of $f(x)$. [6]
2. Find the radius and interval of convergence of this Taylor series. [4]

13:00 Seminar

Let $f(x)=\ln (2+x)$.

1. Find the Taylor series at $a=0$ of $f(x)$. [6]
2. Find the radius and interval of convergence of this Taylor series. [4]
