Mathematics 110 – Calculus of one variable Trent University 2002-2003

§A QUIZZES

Quiz #1. Wednesday, 18 September, 2002. [10 minutes] 12:00 Seminar

1. Compute $\lim_{x\to 2} \frac{x^2 - x - 2}{x - 2}$ or show that this limit does not exist. [5]

- 2. Sketch the graph of a function f(x) which is defined for all x and for which lim f(x) = 1, lim f(x) does not exist, and lim f(x) = 4. [5]
 13:00 Seminar
- 1. Compute $\lim_{x \to 2^-} \frac{x^2 x + 2}{x 2}$ or show that this limit does not exist. [5]
- 2. Sketch the graph of a function g(x) which is defined for all x, and for which $\lim_{x\to 0} g(x) = \infty$, $\lim_{x\to 2} g(x)$ does not exist, and g(x) does not have an asymptote at x = 2. [5]
- Quiz #2. Wednesday, 25 September, 2002. [10 minutes] 12:00 Seminar
 - 1. Use the $\epsilon \delta$ definition of limits to verify that $\lim_{x \to 3} (5x 7) = 8$. [10]

13:00 Seminar

1. Use the $\epsilon - \delta$ definition of limits to verify that $\lim_{x \to 2} (3 - 2x) = -1$. [10]

Quiz #3. Wednesday, 2 October, 2002. [10 minutes]

12:00 Seminar

1. For which values of the constant c is the function

$$f(x) = \begin{cases} e^{cx} & x \ge 0\\ cx+1 & x < 0 \end{cases}$$

continuous at x = 0? Why? [10]

13:00 Seminar

1. For which values of the constant c is the function

$$f(x) = \begin{cases} e^{cx} & x \ge 0\\ c(x+1) & x < 0 \end{cases}$$

continuous at x = 0? Why? [10]

Quiz #4. Wednesday, 9 October, 2002. [12 minutes]

12:00 Seminar

Suppose

$$f(x) = \begin{cases} x & x < 0\\ 0 & x = 0\\ 2x^2 + x & x > 0 \end{cases}$$

- 1. Use the definition of the derivative to check whether f'(0) exists and compute it if it does. [7]
- 2. Compute f'(1) (any way you like). [3]

13:00 Seminar

Suppose $g(x) = \frac{1}{x+1}$. Compute g'(x) using

- 1. the rules for computing derivatives [3], and
- 2. the definition of the derivative. [7]
- Quiz #5. Wednesday, 16 October, 2002. [10 minutes]

12:00 Seminar

Compute $\frac{d}{dx}\sqrt[5]{x}$ using

- 1. the Power Rule [2], and
- the fact that f(x) = ⁵√x is the inverse function of g(x) = x⁵. [8]
 13:00 Seminar
- 1. Compute $\frac{d}{dx} \arccos(x)$ given that $\cos(\arccos(x)) = x$ and $\cos^2(x) + \sin^2(x) = 1$. [10]

Quiz #6. Wednesday, 30 October, 2002. [10 minutes]

12:00 Seminar

1. Find the absolute and local maxima and minima of $f(x) = x^3 + 2x^2 - x - 2$ on [-2, 2]. [10]

13:00 Seminar

1. Find the absolute and local maxima and minima of $f(x) = x^3 - 3x^2 - x + 3$ on [-2, 2]. [10]

Quiz #7. Wednesday, 6 November, 2002. [15 minutes]

12:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of $f(x) = (x-2)e^x$ and sketch its graph. [10]

13:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of $h(x) = (x+1)e^{-x}$ and sketch its graph. [10]

Quiz #8. Wednesday, 27 November, 2002. [15 minutes]

12:00 Seminar

1. Compute:

$$\int_{1}^{e^{\pi}} \frac{1}{x} \sin\left(\ln(x)\right) \, dx \qquad [5]$$

2. What definite integral does the Right-hand Rule limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(1 + \frac{i}{n} \right) \cdot \frac{1}{n}$$

correspond to? [5]

13:00 Seminar

1. Compute:

$$\int_0^{\pi/4} \frac{\tan(x)}{\cos^2(x)} \, dx \qquad [5]$$

2. What definite integral does the Right-hand Rule limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2i}{n} - 1\right) \cdot \frac{1}{n}$$

correspond to? [5]

Quiz #9. Wednesday, 4 December, 2002. [15 minutes] 12:00 Seminar

- 1. Find the area of the region enclosed by $y = -x^2$ and $y = x^2 2x$. [10] 13:00 Seminar
- 1. Find the area of the region enclosed by $y = (x-2)^2 + 1 = x^2 4x + 5$ and y = x + 1. [10]

Quiz #10. Wednesday, 8 January, 2003. [25 minutes]

12:00 Seminar

- Sketch the solid obtained by rotating the region bounded by y = 0 and y = cos(x) for ^π/₂ ≤ x ≤ ^{3π}/₂ about the y-axis and find its volume. [10]

 13:00 Seminar
- 1. Sketch the solid obtained by rotating the region bounded by y = -1 and $y = \cos(x)$ for $0 \le x \le \pi$ about the y-axis and find its volume. [10]

Quiz #11. Wednesday, 15 January, 2003. [20 minutes]

12:00 Seminar

1. Compute $\int \frac{1}{1-x^2} dx.$ [10]

13:00 Seminar

1. Compute
$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx.$$
 [10]

Quiz #12. Wednesday, 22 January, 2003. [20 minutes]

12:00 Seminar

1. Compute $\int \frac{3x^2 + 4x + 2}{x^3 + 2x^2 + 2x} dx$. [10]

13:00 Seminar
1. Compute
$$\int \frac{2x+1}{x^3+2x^2+x} dx$$
. [10]

Quiz #13. Wednesday, 29 January, 2003. [15 minutes]

12:00 Seminar 1. Compute $\int_{-\infty}^{\infty} e^{-|x|} dx$ or show that it does not converge. [10]

13:00 Seminar

1. Compute
$$\int_{-1}^{1} \frac{x+1}{\sqrt[3]{x}} dx$$
 or show that it does not converge. [10]

Quiz #14. Wednesday, 5 February, 2003. [20 minutes]

12:00 Seminar

- 1. Sketch the solid obtained by rotating the region bounded by x = 0, y = 4 and $y = x^2$ for $0 \le x \le 2$ about the y-axis. [2]
- 2. Compute the surface area of this solid. [8]

13:00 Seminar

- 1. Sketch the curve given by the parametric equations $x = 1 + \cos(t)$ and $y = \sin(t)$, where $0 \le t \le 2\pi$. [3]
- 2. Compute the arc-length of this curve using a suitable integral. [7]

Quiz #15. Wednesday, 26 February, 2003. [20 minutes]

12:00 Seminar

- 1. Graph the polar curve $r = \sin(2\theta), \ 0 \le \theta \le 2\pi$. [4]
- Find the area of the region enclosed by this curve. [6]
 13:00 Seminar
- 1. Graph the polar curve $r = \cos(\theta), \ 0 \le \theta \le 2\pi$. [4]
- 2. Find the arc-length of this curve. [6]

Quiz #16. Wednesday, 5 March, 2003. [15 minutes]

12:00 Seminar

Let
$$a_k = \frac{1}{(k+1)(k+2)}$$
 and $s_n = \sum_{k=0}^n a_k$

- 1. Find a formula for s_n in terms of n. [5]
- 2. Does $\sum_{k=0}^{\infty} a_k$ converge? If so, what does it converge to? [5]

13:00 Seminar

Let
$$a_k = \ln\left(\frac{k}{k+1}\right)$$
 and $s_n = \sum_{k=0}^n a_k$.

- 1. Find a formula for s_n in terms of n. [5]
- 2. Does $\sum_{k=0}^{\infty} a_k$ converge? If so, what does it converge to? [5]

Quiz #17. Wednesday, 12 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges or diverges:

1.
$$\sum_{n=0}^{\infty} e^{-n}$$
 [5] 2. $\sum_{n=1}^{\infty} \frac{1}{\arctan(n)}$ [5]

13:00 Seminar

Determine whether each of the following series converges or diverges:

1.
$$\sum_{n=0}^{\infty} \frac{1}{n+1}$$
 [5] 2. $\sum_{n=1}^{\infty} 2^{1/n^2}$ [5]

Quiz #18. Wednesday, 19 March, 2003. [15 minutes]

12:00 Seminar

Determine whether each of the following series converges absolutely, converges conditionally, or diverges:

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{n^2 + 2}$$
 [5] 2. $\sum_{n=1}^{\infty} \frac{n! (-1)^n}{n^n}$ [5]

13:00 Seminar

Determine whether each of the following series converges absolutely, converges conditionally, or diverges:

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(2n^2 + 3n + 4\right)}{3n^2 + 4n + 5}$$
 [5] 2. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2}$ [5]

Bonus Quiz. Friday, 21 March, 2003. [15 minutes]

- 1. A smiley face is drawn on the surface of a balloon which is being inflated at a rate of $10 \ cm^3/s$. At the instant that the radius of the balloon is $10 \ cm$ the eyes are $10 \ cm$ apart, as measured *inside* the balloon. How is the distance between them changing at this moment? [10]
- Quiz #19. Wednesday, 26 March, 2003. [20 minutes]

12:00 Seminar

Consider the power series $\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{n!}$.

- 1. For which values of x does this series converge? [6]
- 2. This series is equal to a (reasonably nice) function. What is it? Why? [4] 13:00 Seminar

Consider the power series
$$\sum_{n=0}^{\infty} \frac{2^n x^{n+1}}{n+1}$$
.

- 1. For which values of x does this series converge? [6]
- 2. This series is equal to a (reasonably nice) function. What is it? Why? [4]

Quiz #20. Wednesday, 2 April, 2003. [20 minutes]

12:00 Seminar

Let $f(x) = \sin(\pi - 2x)$.

- 1. Find the Taylor series at a = 0 of f(x). [6]
- Find the radius and interval of convergence of this Taylor series. [4]
 13:00 Seminar

Let $f(x) = \ln(2+x)$.

- 1. Find the Taylor series at a = 0 of f(x). [6]
- 2. Find the radius and interval of convergence of this Taylor series. [4]