
Mathematics 110 – Calculus of one variable
Trent University, 2001-2002

Test #2
Friday, 8 February, 2002

Time: 50 minutes

1. Compute any three of the integrals a-e. [12 = 3 × 4 ea.]

a.
∫ π/2

−π/2
cos3(x)dx b.

∫
x2ln(x)dx c.

∫ 1

0

(ex)2
dx

d.
∫
e2xln

(
e2x + 1

)
e2x + 1

dx e.
∫ e

1

(ln(x))2
dx

Solutions.
a.∫ π/2

−π/2
cos3(x)dx =

∫ π/2

−π/2
cos2(x) cos(x)dx =

∫ π/2

−π/2

(
1− sin2(x)

)
cos(x)dx

We’ll substitute u = sin(x), so du = cos(x)dx, −1 = sin(−π/2),
and 1 = sin(π/2).

=
∫ 1

−1

(
1− u2

)
du =

(
u− u3

3

)∣∣∣∣1
−1

=
(

1− 1
3

)
−
(
−1 +

1
3

)
=

4
3
�

b. We’ll use integration by parts, with u = ln(x) and dv = x2 dx, so du = 1
x
dx and v = x3

3
.∫

x2ln(x)dx =
x3

3
ln(x)−

∫
x3

3
· 1
x
dx =

x3

3
ln(x)−

∫
x2

3
dx =

x3

3
ln(x) − x3

9
+ C �

c. After bit of algebra, we’ll use the substitution u = 2x, so du = 2 dx (and 1
2 du = dx),

0 = 2 · 0, and 2 = 2 · 1.∫ 1

0

(ex)2
dx =

∫ 1

0

e2x dx =
∫ 2

0

eu · 1
2
du =

1
2
eu
∣∣∣∣2
0

=
1
2
(
e2 − 1

)
�

d. We’ll substitute whole hog: let w = ln
(
e2x + 1

)
, so dw = 2e2x

e2x+1 dx (and 1
2 dw = e2x

e2x+1 ).∫
e2xln

(
e2x + 1

)
e2x + 1

dx =
∫
w · 1

2
dw =

w2

4
+ C =

1
4
(
ln
(
e2x + 1

))2
+ C �

e. We’ll use integration by parts, with u = (ln(x))2 and dv = dx, so du = 2ln(x) · 1
x dx

and v = x.∫ e

1

(ln(x))2
dx = x (ln(x))2

∣∣∣e
1
−
∫ e

1

x · 2ln(x) · 1
x
dx =

(
e · 12 − 1 · 02

)
− 2

∫ e

1

ln(x)dx

We use integration by parts again, with u = ln(x) and dv = dx,

so du =
1
x
dx and v = x.

= e− 2
(
xln(x)|e1 −

∫ e

1

x · 1
x
dx

)
= e− 2

(
(e · 1− 1 · 0)−

∫ e

1

1 dx
)

= e− 2 (e− x|e1) = e− 2 (e − (e − 1)) = e− 2 �
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2. Do any two of a-c. [8 = 2 × 4 ea.]

a. Compute
1∫
0

(2x+ 3)dx using the Right-hand Rule.

b. Compute
dy

dx
if y =

x2∫
0

√
t dt (where x ≥ 0) without evaluating the integral.

c. Compute
1∫
−1

√
1− x2 dx by interpreting it as an area.

Solutions.
a. If we partition [0, 1] into n equal subintervals, then the ith subinterval is

[
i−1
n , in

]
, which

has width 1
n and right endpoint i

n . Thus the area of the ith rectangle in the Right-hand
Rule Riemann sum is

(
2 in + 3

)
1
n . Hence

∫ 1

0

(2x+ 3)dx = lim
n→∞

n∑
i=1

(
2
i

n
+ 3
)

1
n

= lim
n→∞

1
n

n∑
i=1

(
2
i

n
+ 3
)

= lim
n→∞

1
n

[
2

(
n∑
i=1

i

n

)
+

(
n∑
i=1

3

)]
= lim
n→∞

1
n

[
2
n

(
n∑
i=1

i

)
+ 3n

]

= lim
n→∞

1
n

[
2
n
· n(n+ 1)

2
+ 3n

]
= lim
n→∞

1
n

[(n+ 1) + 3n] = lim
n→∞

1
n

[4n+ 1]

= lim
n→∞

[
4n
n

+
1
n

]
= lim

n→∞

[
4 +

1
n

]
= 4 + 0 = 4 �

b. Let u = x2; since x ≥ 0, x =
√
u. Then, using the Chain Rule and the Fundamental

Theorem of Calculus,

dy

dx
=
dy

du
· du
dx

=
(
d

du

∫ u

0

√
t dt

)
· du
dx

=
√
u · du

dx
=
√
x2 · d

dx
x2 = x · 2x = 2x2 �

c. Note that y =
√

1− x2, −1 ≤ x ≤ 1, is the upper half of the unit circle x2 + y2 = 1.

This circle has area π12 = π, so
1∫
−1

√
1− x2 dx, which represents the area of the upper half

of the circle, is equal to π
2 . �

3. Water is poured at a rate of 1 m3/min into a conical tank (set up point down) 2 m
high and with radius 1 m at the top. How quickly is the water rising in the tank at
the instant that it is 1 m deep over the tip of the cone? [8]
(The volume of a cone of height h and radius r is 1

3πr
2h.)

Solution. At any given instant, the water in the tank occupies a conical volume, with
height – that is, depth in the tank – h and radius r in the same proportions as the tank
as a whole.
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Hence r
h = 1

2 , so r = h
2 , and it follows that the volume of the water at the given

instant is

V =
1
3
πr2h =

1
3
π

(
h

2

)2

h =
1
12
πh3 .

Note that the rate at which the water is rising in the tank is dh
dt

.
Since, on the one hand dV

dt = 1 m3/min, and on the other hand

dV

dt
=

d

dt

(
1
12
πh3

)
=

d

dh

(
1
12
πh3

)
· dh
dt

=
1
12
π · 3h2 · dh

dt
=

1
4
πh2 · dh

dt
,

we know that any given instant, dh
dt = dV

dt /
1
4πh

2 = 1/ 1
4πh

2 = 4/πh2. At the particular
instant that h = 1 m, it follows that dh

dt = 4/π12 = 4/π m/min. �

4. Consider the region in the first quadrant with upper boundary y = x2 and lower
boundary y = x3, and also the solid obtained by rotating this region about the y-axis.

a. Sketch the region and find its area. [4]

b. Sketch the solid and find its volume. [7]

c. What is the average area of either a washer or a shell (your pick!) for the solid? [1]

Solution.

a. First, we find the points of intersection of the two curves: if x2 = x3, then x = 0 or
x = x3/x2 = 1. Note that when 0 ≤ x ≤ 1, then x3 = x2 · x ≤ x2 · 1 = x2. It’s not too
hard to see that the region between the curves looks more or less like:
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The area of the region is then∫ 1

0

(
x2 − x3

)
dx =

(
x3

3
− x4

4

)∣∣∣∣1
0

=
(

1
3
− 1

4

)
− (0− 0) =

1
12

�

b. Rotating (revolving, whatever . . . ) the region about the y-axis produces the following
solid.

The volume of this solid is a little easier to compute using shells than using washers.
Since we rotated the region about a vertical line, we will use x as the variable of integration;
note that 0 ≤ x ≤ 1 over the region in question. With respect to x, a generic cylindrical
shell has radius r = x− 0 = x and height h = x2 − x3. Thus the volume of the solid is∫ 1

0

2πrh dx =
∫ 1

0

2πx
(
x2 − x3

)
dx = 2π

∫ 1

0

(
x3 − x4

)
dx

= 2π
(
x4

4
− x5

5

)∣∣∣∣1
0

= 2π
[(

1
4
− 1

5

)
− (0 − 0)

]
= 2π

1
20

=
π

10
. �

c. From b we know that the area of the cylindrical shell for x, where 0 ≤ x ≤ 1, is
2πx

(
x2 − x3

)
. Thus the average area of a cylindrical shell for this solid is

1
1− 0

∫ 1

0

2πx
(
x2 − x3

)
dx = 1 · π

10
=

π

10
. �
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