# Mathematics 110 - Calculus of one variable 

Trent University, 2001-2002
Test \#2
Friday, 8 February, 2002
Time: 50 minutes

1. Compute any three of the integrals a-e. $\quad[12=3 \times 4 \mathrm{ea}$.
a. $\int_{-\pi / 2}^{\pi / 2} \cos ^{3}(x) d x$
b. $\int x^{2} \ln (x) d x$
c. $\int_{0}^{1}\left(e^{x}\right)^{2} d x$
d. $\int \frac{e^{2 x} \ln \left(e^{2 x}+1\right)}{e^{2 x}+1} d x$
e. $\int_{1}^{e}(\ln (x))^{2} d x$

## Solutions.

a.

$$
\int_{-\pi / 2}^{\pi / 2} \cos ^{3}(x) d x=\int_{-\pi / 2}^{\pi / 2} \cos ^{2}(x) \cos (x) d x=\int_{-\pi / 2}^{\pi / 2}\left(1-\sin ^{2}(x)\right) \cos (x) d x
$$

$$
\text { We'll substitute } u=\sin (x) \text {, so } d u=\cos (x) d x,-1=\sin (-\pi / 2),
$$

$$
\text { and } 1=\sin (\pi / 2)
$$

$$
=\int_{-1}^{1}\left(1-u^{2}\right) d u=\left.\left(u-\frac{u^{3}}{3}\right)\right|_{-1} ^{1}=\left(1-\frac{1}{3}\right)-\left(-1+\frac{1}{3}\right)=\frac{4}{3}
$$

b. We'll use integration by parts, with $u=\ln (x)$ and $d v=x^{2} d x$, so $d u=\frac{1}{x} d x$ and $v=\frac{x^{3}}{3}$.

$$
\int x^{2} \ln (x) d x=\frac{x^{3}}{3} \ln (x)-\int \frac{x^{3}}{3} \cdot \frac{1}{x} d x=\frac{x^{3}}{3} \ln (x)-\int \frac{x^{2}}{3} d x=\frac{x^{3}}{3} \ln (x)-\frac{x^{3}}{9}+C
$$

c. After bit of algebra, we'll use the substitution $u=2 x$, so $d u=2 d x$ (and $\frac{1}{2} d u=d x$ ), $0=2 \cdot 0$, and $2=2 \cdot 1$.

$$
\int_{0}^{1}\left(e^{x}\right)^{2} d x=\int_{0}^{1} e^{2 x} d x=\int_{0}^{2} e^{u} \cdot \frac{1}{2} d u=\left.\frac{1}{2} e^{u}\right|_{0} ^{2}=\frac{1}{2}\left(e^{2}-1\right)
$$

d. We'll substitute whole hog: let $w=\ln \left(e^{2 x}+1\right)$, so $d w=\frac{2 e^{2 x}}{e^{2 x}+1} d x$ (and $\frac{1}{2} d w=\frac{e^{2 x}}{e^{2 x}+1}$ ).

$$
\int \frac{e^{2 x} \ln \left(e^{2 x}+1\right)}{e^{2 x}+1} d x=\int w \cdot \frac{1}{2} d w=\frac{w^{2}}{4}+C=\frac{1}{4}\left(\ln \left(e^{2 x}+1\right)\right)^{2}+C
$$

e. We'll use integration by parts, with $u=(\ln (x))^{2}$ and $d v=d x$, so $d u=2 \ln (x) \cdot \frac{1}{x} d x$ and $v=x$.

$$
\int_{1}^{e}(\ln (x))^{2} d x=\left.x(\ln (x))^{2}\right|_{1} ^{e}-\int_{1}^{e} x \cdot 2 \ln (x) \cdot \frac{1}{x} d x=\left(e \cdot 1^{2}-1 \cdot 0^{2}\right)-2 \int_{1}^{e} \ln (x) d x
$$ We use integration by parts again, with $u=\ln (x)$ and $d v=d x$, so $d u=\frac{1}{x} d x$ and $v=x$.

$$
\begin{aligned}
& =e-2\left(\left.x \ln (x)\right|_{1} ^{e}-\int_{1}^{e} x \cdot \frac{1}{x} d x\right)=e-2\left((e \cdot 1-1 \cdot 0)-\int_{1}^{e} 1 d x\right) \\
& =e-2\left(e-\left.x\right|_{1} ^{e}\right)=e-2(e-(e-1))=e-2
\end{aligned}
$$

2. Do any two of a-c. $[8=2 \times 4$ ea. $]$
a. Compute $\int_{0}^{1}(2 x+3) d x$ using the Right-hand Rule.
b. Compute $\frac{d y}{d x}$ if $y=\int_{0}^{x^{2}} \sqrt{t} d t$ (where $x \geq 0$ ) without evaluating the integral.
c. Compute $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by interpreting it as an area.

## Solutions.

a. If we partition $[0,1]$ into $n$ equal subintervals, then the $i$ th subinterval is $\left[\frac{i-1}{n}, \frac{i}{n}\right]$, which has width $\frac{1}{n}$ and right endpoint $\frac{i}{n}$. Thus the area of the $i$ th rectangle in the Right-hand Rule Riemann sum is $\left(2 \frac{i}{n}+3\right) \frac{1}{n}$. Hence

$$
\begin{aligned}
\int_{0}^{1}(2 x+3) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2 \frac{i}{n}+3\right) \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(2 \frac{i}{n}+3\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[2\left(\sum_{i=1}^{n} \frac{i}{n}\right)+\left(\sum_{i=1}^{n} 3\right)\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{n}\left(\sum_{i=1}^{n} i\right)+3 n\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{2}{n} \cdot \frac{n(n+1)}{2}+3 n\right]=\lim _{n \rightarrow \infty} \frac{1}{n}[(n+1)+3 n]=\lim _{n \rightarrow \infty} \frac{1}{n}[4 n+1] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4 n}{n}+\frac{1}{n}\right]=\lim _{n \rightarrow \infty}\left[4+\frac{1}{n}\right]=4+0=4
\end{aligned}
$$

b. Let $u=x^{2}$; since $x \geq 0, x=\sqrt{u}$. Then, using the Chain Rule and the Fundamental Theorem of Calculus,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\left(\frac{d}{d u} \int_{0}^{u} \sqrt{t} d t\right) \cdot \frac{d u}{d x}=\sqrt{u} \cdot \frac{d u}{d x}=\sqrt{x^{2}} \cdot \frac{d}{d x} x^{2}=x \cdot 2 x=2 x^{2}
$$

c. Note that $y=\sqrt{1-x^{2}},-1 \leq x \leq 1$, is the upper half of the unit circle $x^{2}+y^{2}=1$. This circle has area $\pi 1^{2}=\pi$, so $\int_{-1}^{1} \sqrt{1-x^{2}} d x$, which represents the area of the upper half of the circle, is equal to $\frac{\pi}{2}$.
3. Water is poured at a rate of $1 \mathrm{~m}^{3} / \mathrm{min}$ into a conical tank (set up point down) 2 m high and with radius 1 m at the top. How quickly is the water rising in the tank at the instant that it is 1 m deep over the tip of the cone? [8]
(The volume of a cone of height $h$ and radius $r$ is $\frac{1}{3} \pi r^{2} h$.)
Solution. At any given instant, the water in the tank occupies a conical volume, with height - that is, depth in the tank - $h$ and radius $r$ in the same proportions as the tank as a whole.


Hence $\frac{r}{h}=\frac{1}{2}$, so $r=\frac{h}{2}$, and it follows that the volume of the water at the given instant is

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{1}{12} \pi h^{3} .
$$

Note that the rate at which the water is rising in the tank is $\frac{d h}{d t}$.
Since, on the one hand $\frac{d V}{d t}=1 \mathrm{~m}^{3} / \mathrm{min}$, and on the other hand

$$
\frac{d V}{d t}=\frac{d}{d t}\left(\frac{1}{12} \pi h^{3}\right)=\frac{d}{d h}\left(\frac{1}{12} \pi h^{3}\right) \cdot \frac{d h}{d t}=\frac{1}{12} \pi \cdot 3 h^{2} \cdot \frac{d h}{d t}=\frac{1}{4} \pi h^{2} \cdot \frac{d h}{d t}
$$

we know that any given instant, $\frac{d h}{d t}=\frac{d V}{d t} / \frac{1}{4} \pi h^{2}=1 / \frac{1}{4} \pi h^{2}=4 / \pi h^{2}$. At the particular instant that $h=1 \mathrm{~m}$, it follows that $\frac{d h}{d t}=4 / \pi 1^{2}=4 / \pi \mathrm{m} / \mathrm{min}$.
4. Consider the region in the first quadrant with upper boundary $y=x^{2}$ and lower boundary $y=x^{3}$, and also the solid obtained by rotating this region about the $y$-axis.
a. Sketch the region and find its area. [4]
b. Sketch the solid and find its volume. [7]
c. What is the average area of either a washer or a shell (your pick!) for the solid? [1]

## Solution.

a. First, we find the points of intersection of the two curves: if $x^{2}=x^{3}$, then $x=0$ or $x=x^{3} / x^{2}=1$. Note that when $0 \leq x \leq 1$, then $x^{3}=x^{2} \cdot x \leq x^{2} \cdot 1=x^{2}$. It's not too hard to see that the region between the curves looks more or less like:


The area of the region is then

$$
\int_{0}^{1}\left(x^{2}-x^{3}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-(0-0)=\frac{1}{12}
$$

b. Rotating (revolving, whatever ... ) the region about the $y$-axis produces the following solid.


The volume of this solid is a little easier to compute using shells than using washers. Since we rotated the region about a vertical line, we will use $x$ as the variable of integration; note that $0 \leq x \leq 1$ over the region in question. With respect to $x$, a generic cylindrical shell has radius $r=x-0=x$ and height $h=x^{2}-x^{3}$. Thus the volume of the solid is

$$
\begin{aligned}
\int_{0}^{1} 2 \pi r h d x & =\int_{0}^{1} 2 \pi x\left(x^{2}-x^{3}\right) d x=2 \pi \int_{0}^{1}\left(x^{3}-x^{4}\right) d x \\
& =\left.2 \pi\left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=2 \pi\left[\left(\frac{1}{4}-\frac{1}{5}\right)-(0-0)\right]=2 \pi \frac{1}{20}=\frac{\pi}{10}
\end{aligned}
$$

c. From $\mathbf{b}$ we know that the area of the cylindrical shell for $x$, where $0 \leq x \leq 1$, is $2 \pi x\left(x^{2}-x^{3}\right)$. Thus the average area of a cylindrical shell for this solid is

$$
\frac{1}{1-0} \int_{0}^{1} 2 \pi x\left(x^{2}-x^{3}\right) d x=1 \cdot \frac{\pi}{10}=\frac{\pi}{10}
$$

