Mathematics 110 - Calculus of one variable

Trent University 2001-2002
Solutions to Assignment \#8

Length of curves

1. Find the length of the curve given by the paramateric equations

$$
\begin{aligned}
& x=t \cos (t) \\
& y=t \sin (t)
\end{aligned}
$$

$$
\text { for } 0 \leq t \leq 2 \pi
$$

Solution. The length of the curve is given by the formula, which can be found in $\S 10.3$, $\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$. Since $\frac{d x}{d t}=\cos (t)-t \sin (t)$ and $\frac{d y}{d t}=\sin (t)+t \cos (t)$, the length of the given curve can be computed as follows:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{(\cos (t)-t \sin (t))^{2}+(\sin (t)+t \cos (t))} d t \\
= & \int_{0}^{2 \pi} \sqrt{\cos ^{2}(t)-2 t \sin (t) \cos (t)+t^{2} \sin ^{2}(t)+\sin (t)+2 t \cos (t) \sin (t)+t^{2} \cos ^{2}(t)} d t \\
= & \int_{0}^{2 \pi} \sqrt{\cos ^{2}(t)+t^{2} \sin ^{2}(t)+\sin (t)+t^{2} \cos ^{2}(t)} d t \\
= & \int_{0}^{2 \pi} \sqrt{\left(1+t^{2}\right) \cos ^{2}(t)+\left(1+t^{2}\right) \sin ^{2}(t)} d t \\
= & \int_{0}^{2 \pi} \sqrt{\left(1+t^{2}\right)\left(\sin ^{2}(t)+\cos ^{2}(t)\right)} d t \\
= & \int_{0}^{2 \pi} \sqrt{1+t^{2}} d t \quad \operatorname{since} \sin ^{2}(t)+\cos ^{2}(t)=1
\end{aligned}
$$

Using $t=\tan (\theta), d t=\sec ^{2}(\theta) d \theta$, now gives:

$$
\begin{aligned}
& =\int_{t=0}^{t=2 \pi} \sqrt{1+\tan ^{2}(\theta)} \sec ^{2}(\theta) d \theta \\
& =\int_{t=0}^{t=2 \pi} \sqrt{\sec ^{2}(\theta)} \sec ^{2}(\theta) d \theta \\
& =\int_{t=0}^{t=2 \pi} \sec ^{3}(\theta) d \theta
\end{aligned}
$$

This is an integral we've seen before, so we'll cut to the chase:

$$
\begin{aligned}
& =\left.\frac{1}{2} \tan (\theta) \sec (\theta)\right|_{t=0} ^{t=2 \pi}+\left.\frac{1}{2} \ln (\tan (\theta)+\sec (\theta))\right|_{t=0} ^{t=2 \pi} \\
& =\left.\frac{1}{2} \cdot t \cdot \sqrt{1+t^{2}}\right|_{0} ^{2 \pi}+\left.\frac{1}{2} \ln \left(t+\sqrt{1+t^{2}}\right)\right|_{0} ^{2 \pi} \\
& =\frac{1}{2} \cdot 2 \pi \cdot \sqrt{1+(2 \pi)^{2}}-\frac{1}{2} \cdot 0 \cdot \sqrt{1+0^{2}} \\
& \quad \quad \quad \frac{1}{2} \ln \left(2 \pi+\sqrt{1+(2 \pi)^{2}}\right)-\frac{1}{2} \ln \left(0+\sqrt{1+0^{2}}\right) \\
& =\pi \sqrt{1+4 \pi^{2}}-0+\frac{1}{2} \ln \left(2 \pi+\sqrt{1+4 \pi^{2}}\right)-0 \\
& =\pi \sqrt{1+4 \pi^{2}}+\frac{1}{2} \ln \left(2 \pi+\sqrt{1+4 \pi^{2}}\right)
\end{aligned}
$$

Ugly answer!
2. Find the length of the curve in three dimensions given by the paramateric equations

$$
\begin{aligned}
& x=3 \cos (t) \\
& y=3 \sin (t) \\
& z=4 t
\end{aligned}
$$

for $0 \leq t \leq 2 \pi$. [4]
Solution. The length of a parametric curve in three dimensions is given by a formula very similar to that used in 2, namely $\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$. Things do work out rather more nicely here, though:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{(-3 \sin (t))^{2}+(3 \cos (t))^{2}+4^{2}} d t \\
= & \int_{0}^{2 \pi} \sqrt{9 \sin ^{2}(t)+9 \cos ^{2}(t)+16} d t \\
= & \int_{0}^{2 \pi} \sqrt{9\left(\sin ^{2}(t)+\cos ^{2}(t)\right)+16} d t \\
= & \int_{0}^{2 \pi} \sqrt{9+16} d t \\
= & \int_{0}^{2 \pi} \sqrt{25} d t \\
= & \int_{0}^{2 \pi} 5 d t \\
= & \left.5 t\right|_{0} ^{2 \pi} \\
= & 5 \cdot 2 \pi-5 \cdot 0 \\
= & 10 \pi
\end{aligned}
$$

3. Find, if you can, the length of the perimeter of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$. [2]

Solution. One way to try this is to parametrize the ellipse and try to use the same formula used in 2. One nice parametrization of the given ellipse is

$$
\begin{aligned}
& x=2 \cos (t) \\
& y=3 \sin (t)
\end{aligned}
$$

where $0 \leq t \leq 2 \pi$. Unfortunately, the resulting integral,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{(-2 \sin (t))^{2}+(3 \cos (t))^{2}} d t \\
= & \int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(t)+9 \cos ^{2}(t)} d t \\
= & \int_{0}^{2 \pi} \sqrt{4\left(\sin ^{2}(t)+\cos ^{2}(t)\right)+5 \cos ^{2}(t)} \\
= & \int_{0}^{2 \pi} \sqrt{4+5 \cos ^{2}(t)} d t
\end{aligned}
$$

is rather intractable ...
The options on how to deal with this include:
i. Approximate the integral numerically using Riemann sums or some variation of them.
ii. Find a function which is easier to integrate that is close to $\sqrt{4+5 \cos ^{2}(t)}$ and use its integral to approximate the given one.
iii. Express $\sqrt{4+5 \cos ^{2}(t)}$ as a power series, integrate that term by term, and (probably) get an answer in terms of an infinite series.
$i v$. Look it up ...
No matter how you sliced it, good luck!

