
The Basic Substitution Rule

The Chain Rule Reversed

The Chain Rule of differential calculus tells us how to compute the derivative of a
composition of two functions (f ◦ g)(x) = f (g(x))):

(f ◦ g)′(x) =
d

dx
f (g(x))) = f ′ (g(x)) · g′(x)

For example, since
d

dx
sin(x) = cos(x) and

d

dx
x2 = 2x, the Chain Rule tells us that

d

dx
sin
(
x2
)

= cos
(
x2
)
· 2x = 2x cos

(
x2
)
. As with every derivative formula, running it in

reverse gives us an anti-derivative formula:∫
f ′ (g(x))) · g′(x) dx = f (g(x))) + C

The rule is rarely used in this form, however. The usual way to write and use this

rule is to simplify an integral of the form

∫
h (g(x))) · g′(x) dx by writing u = g(x), so

du = g′(x) dx, and then replace the expressions g(x) and g′(x) dx by u and du, respectively.
For indefinite integrals this gives us the following.

(Basic) Substitution Rule:

∫
h (g(x))) · g′(x) dx =

∫
h(u) du

One normally puts the solution to an indefinite integral in terms of the original vari-
able, so one has to substitute back at that stage: if H(u) was the antiderivative of h(u)
above, one would finish finding the antiderivative above as follows: · · · = H(u) + C =
H (g(x)) + C

When dealing with definite integrals, such as

∫ b

a

h (g(x))) · g′(x) dx, one normally re-

places the limits in x with their counterparts in terms of the new variable u,
x a b
u g(a) g(b)

,

so ∫ b

a

h (g(x))) · g′(x) dx =

∫ g(b)

g(a)

h(u) du = H (g(b))−H (g(a)) ,

where H(u) is any antiderivative of h(u). Alternatively, one can keep track of the variable
the old limits belong to, ∫ b

a

h (g(x))) · g′(x) dx =

∫ x=b

x=a

h(u) du ,

and then substitute back in terms of the original variable before using the limits of inte-
gration. In this case the calculation would work like:∫ b

a

h (g(x))) · g′(x) dx =

∫ x=b

x=a

h(u) du = H(u)|x=bx=a = H (g(x))|ba = H (g(b))−H (g(a))
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The methods give the same answer (they’d better! :-) and which is preferable depends the
particular integral and personal taste. To start with, at least, I would recommend trying
both a few times and then mainly using the one you find yourself more comfortable with.

In practice, the real problem with using the Substitution Rule is identifying a suitable
g(x) in whatever integrand you have to deal with. Sometimes there are several appar-
ent choices and you have to figure out which one you ought to try, sometimes whatever
choices are there are hard to spot, and sometimes there are no suitable choices to make a
substitution at all, so some technique other than substitution will have to be used.

Examples, with a trick thrown in

We will look for a composition h (g(x)) in the integrand, with the derivative of the
inner function, g′(x) as a factor of the integrand.

1. Let’s find the antiderivative of

∫
2x cos

(
x2
)
dx. There is an obvious composition,

namely cos
(
x2
)
, as one factor of the integrand, with the deivative of the inner function,

d

dx
x2 = 2x, as the other factor. To simplify the integral we therefore take u = x2, so

du = 2x dx, and then deal with the simplified version:∫
2x cos

(
x2
)
dx =

∫
cos(u) du = sin(u) + C = sin

(
x2
)

+ C

Note that we substituted back in terms of the original variable at the end.

2. This time, let’s work out

∫
x
√

1 + x2 dx. It would be nice to simplify the expression
√

1 + x2. (Anyone who tries to do this by claiming
√

1 + x2 =
√

1 +
√
x2 = 1 + x,

will be wrong . The only time you’d get away with it is when x = 0; the square root
function does not play nice with addition.) We’ll try to simplify it by using the substitution
u = 1 + x2. Then

√
1 + x2 =

√
u = u1/2 which is pretty easy to handle. However,

du = d
dx

(
1 + x2

)
dx = 2x dx and we don’t have 2x available to us in the integrand, just

an x. We can work around this by dividing by 2 on both sides of du = 2x dx to get
1
2 du = x dx and substitute accordingly:∫

x
√

1 + x2 dx =

∫ √
u

1

2
du =

1

2

∫
u1/2 du =

1

2
· u

3/2

3/2
+ C

=
1

3
u3/2 + C =

1

3

(
1 + x2

)3/2
+ C

Again, we substituted back in terms of the original variable because we were dealing with
an indefinite integral and hence finding an antiderivative.

This trick of adjusting the expression du = g′(x) dx to fit what is actually
available in the integrand is a very common one. Multiplying or dividing by a non-zero
constant is quite safe in this context, but it is not safe to add or subtract anything on both
sides (ironically, except for zero). Also, any non-constant expression on the du side must
be in terms of u, but not x, and any non-constant expression on the dx side must be in
terms of x, but not u. No expressions mixing us and xs on either side!
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3. Let’s try a definite integral next, say

∫ 2π

3π/2

sin(x)

1 + cos2 x
dx. We’ll use the substitution

u = cos(x), so du = − sin(x) dx and thus (−1) du = sin(x) dx. We’ll also change the limits
as we go along; since cos(3π/2) = 0 and cos(2π) = 1, this change can be summarized as
x 3π/2 2π
u 0 1

. On to the computation:

∫ 2π

3π/2

sin(x)

1 + cos2 x
dx =

∫ 1

0

−1

1 + u2
du = − arctan(u)|10

= (− arctan(1))− (− arctan(0)) =
(
−π

4

)
− (−0) = −π

4

Notice that we used the adjustment trick again, since we didn’t have the negative sign in
the original intehrand that we needed for the substitution we used. This example does
point out the fact that we need to be able to evaluate the antiderivative we eventually find
when computing a definite integral. If you didn’t know – or have someone tell you – what
arctan(1) and arctan(0) are, you’d probably have to work to look things up or haul out a
calculator or computer to get anywhere with this integral.

4. One more definite integral, this time

∫ ln(2)

0

1− ex

1 + ex
dx. We’ll try to simplify this using

the more-or-less obvious substitution u = ex. Then du = ex dx and we run into a problem:
there is no ex we can immediately isolate in the integrand. We can’t use the numerator
1 + ex because it isn’t equal to ex (well, unless 1 = 0 :-). However, we can use the adjust

the du = g′(x) dx trick: since du = ex dx, we have dx =
1

ex
du =

1

u
du. Note that we have

put everything on the du side in terms of u!
If this seems confusing, there is an alternate, and perhaps somewhat better, way of

handling this part of the process. Instead of working out dx in terms of u as we did, we
could have proceeded as follows: we want to substitute u = ex, so let’s solve for x first,

x = ln(u), and then take the derivative,
dx

du
=

d

du
ln(u) =

1

u
, so dx = 1

u du. A number of

substitutions seem to work more easily with this kind of approach.

We’ll also change the limits as we go along:
x 0 ln(2)
u 1 2

Now we’re off to the races:

∫ ln(2)

0

1− ex

1 + ex
dx =

∫ 2

1

1− u
1 + u

· 1

u
du =

∫ 2

1

1− u
u+ u2

du

. . . right up until we try to integrate the allegedly simplified integral on the right. This
requires a bit algebraic trickery you’re not responsible for yet (look up “partial fractions”)

so I will simply tell you that
1− u
u+ u2

=
−2

1 + u
+

1

u
. Plugging this in for the integrand in

the last one on the right gives:∫ 2

1

1− u
u+ u2

du =

∫ 2

1

(
−2

1 + u
+

1

u

)
du =

∫ 2

1

−2

1 + u
du+

∫ 2

1

1

u
du
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We’ll use another substitution, w = 1− u, so dw = (−1) du and thus (−1) dw = du, in the
first of the integral on the right.∫ 2

1

−2

1 + u
du+

∫ 2

1

1

u
du =

∫ u=2

u=1

−2

w
(−1) dw + ln(u)|21 = 2ln(w)|u=2

u=1 + (ln(2)− ln(1))

= 2ln(1 + u)|21 + (ln(2)− 0) = (2ln(3)− 2ln(2)) + ln(2)

= 2ln(3)− ln(2) = ln
(
32
)
− ln(2) = ln(9)− ln(2) = ln

(
9

2

)
Whew!

All in all, the Substitution Rule is a tool for simplifying the integrals we are dealing
with. It isn’t always a useful tool – good luck trying to do anything useful with it in∫
x cos(x) dx, for example – and it does require you to be able to handle the simplified

integral. That may require additional use of the Substitution Rule itself, or variants of
it (like trigonometric substitutions, which you may see eventually), or entirely different
techniques, such as integration by parts, which will be next on our list.
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