
A Precise Definition of the Definite Integral
The Short Form

Intuitively, the definite integral

∫ b

a

f(x) dx represents the area between y = f(x) and

y = 0 for a ≤ x ≤ b, weighted so that area below y = 0 is subtracted and area above
y = 0 is added. There are a number of ways to define the definite integral precisely. The
first rigorous definition was due to Bernhard Riemann (1826-1866), who presented it in a
talk in 1854, though it wasn’t published until 1868. His basic idea was to approximate the
area between y = f(x) and y = 0 by rectangles. As one makes the rectangles narrower
and increases their number, one can get better approximations. Taking a suitable – pretty
complicated! – limit lets one use this idea to define the definite integral.

The definition developed below, due to Jean-Gaston Darboux (1842-1917), uses the
same basic idea as and is equivalent to Riemann’s, but is a little less complicated to deal
with, especially in terms of the limits required.

Preliminaries. We’ll need to make a few subsidiary definitions and set up some termi-
nology and notation. The first is actually a basic property of the real numbers.

Fact. If A is a non-empty set of real numbers which has an upper bound, then
A has a least upper bound or supremum, often denoted by sup(A). Similarly, if
a non-empty set of real numbers has a lower bound, then A has a greatest lower
bound or infimum, often denoted by inf(A).

For example, consider the set
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It is not hard to see that A has greatest lower bound inf(A) = 0 and least upper bound
sup(A) = 1. In this case, inf(A) and sup(A) are not themselves in A. In general, they may
or may not be be. For example, the interval [−2, 3] includes both its greatest lower bound
−2 and its least upper bound 3, the interval [−2, 3) includes its greatest lower bound but
not its least upper bound, the interval (−2, 3] does the reverse of the last, and (−2, 3)
includes neither.

Definition. Suppose a < b. A partition of the interval [a, b] is a set of points
P = { t0, t1, t2, . . . , tn } such that a = t0 < t1 < t2 < · · · < tn = b.

A function f(x) is bounded on [a, b] if it is defined on [a, b] and there are real
numbers m and M such that m ≤ f(x) ≤M for all a ≤ x ≤ b.

Suppose f(x) is bounded on [a, b] and P = { t0, t1, t2, . . . , tn } is a partition
of [a, b]. For each i with 1 ≤ i ≤ n, let mi = inf { f(x) | ti−1 ≤ x ≤ ti } and
Mi = sup { f(x) | ti−1 ≤ x ≤ ti }. Then the lower sum of f(x) for P is

L(f, P ) =
n∑

i=1

mi (ti − ti−1) = m1 (t1 − t0) + m2 (t2 − t1) + · · ·mn (tn − tn−1) ,
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and the upper sum of f(x) for P is

U(f, P ) =

n∑
i=1

Mi (ti − ti−1) = M1 (t1 − t0) + M2 (t2 − t1) + · · ·Mn (tn − tn−1) .

Some comments are in order here. First, mi (ti − ti−1) and Mi (ti − ti−1) are the
weighted areas of rectangles such that

mi (ti − ti−1) ≤ weighted area between y = f(x) and y = 0 on
[
ti−1, t[

]
≤Mi (ti − ti−1) .

Second, we need f(x) to be bounded on [a, b] when defining the upper and lower sums
in order to ensure that the numbers mi and Mi are defined. Third, we did not assume
f(x) was continuous. Every continuous function on a closed interval [a, b] will, of course,
be bounded, but so will any function that has a finite number of removable or jump
discontinuities in [a, b]. A function with infinitely many discontinuities on [a, b] might not
be bounded, and a function with a vertical asymptote at some point in the interval is
guaranteed not to be.

A couple of technically useful facts about upper and lower sums of f(x) on a partition
P of [a, b] are given in the following results.

Lemma. Suppose f(x) is bounded on [a, b] and P and Q are partitions of [a, b]
such that every point of P is also a point of Q. (So the extra points of Q subdivide
(at least some of) the pieces that P divides [a, b] into.) Then L(f, P ) ≤ L(f,Q) ≤
U(f,Q) ≤ U(f, P ).

Proposition. Suppose f(x) is bounded on [a, b] and P and R are any two
partitions of [a, b]. Then L(f, P ) ≤ U(f,R).

Corollary. If f(x) is bounded on [a, b], then

sup {L(f, P ) | P a partition of [a, b] }
≤ inf {U(f, P ) | P a partition of [a, b] } .

The Definite Integral. We can define the fool thing at last:

Definition. A function f(x) bounded on [a, b] is said to be integrable on [a, b]
if sup {L(f, P ) | P a partition of [a, b] } = inf {U(f, P ) | P a partition of [a, b] }.

This number is the definite integral of f(x) on [a, b], denoted by

∫ b

a

f(x) dx.

That is, ∫ b

a

f(x) dx = sup {L(f, P ) | P a partition of [a, b] }

= inf {U(f, P ) | P a partition of [a, b] }

if the sup and inf are equal, and

∫ b

a

f(x) dx is undefined if they are not equal.
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One potential problem with this definition is that the least upper and greatest lower
bounds involved are not that easy to work with directly. The following result lets us work
with something a little more concrete, at the cost of some epsilonics.

Theorem. Suppose f(x) is bounded on [a, b]. Then f(x) is integrable on [a, b] if
and only if for every ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Armed with the definitions and facts above, one can proceed to prove the usual basic
properties of the definite integral relatively easily and move on to the Fundamental The-
orem of Calculus, which gives a more practical tool for computing most common definite
integrals by exploting the connection with antiderivatives.

For a pretty detailed development of much of this material, please consult any of the
four editions of Calculus by Michael Spivak, one of the best-written mathematics textbooks
anywhere. I stole borrowed took creative inspiration for most of the above from this book.
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