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Chapter 1

Introduction

1.1 SageMath

Welcome to SageMath! This tutorial manual is intended as a supplement to Rogawski’s Calculus
textbook and aimed at students looking to quickly learn Sage through examples. It also includes
a brief summary of each calculus topic to emphasize important concepts. Students should refer to

their textbook for a further explanation of each topic.

1.1.1 Creating an Account

SageMath is a powerful computer algebra system (CAS) whose capabilities and features can be
overwhelming for new users. Thus, to make your experience in using Sage as easy as possible,
we recommend that you read this introductory chapter carefully. We will discuss basic syntax and
frequently used commands.

There are two ways to use Sage, you can run Sage on it server (cloud) or install Sage and run it
on your computer:

SageMath Cloud: To use SageMath on the cloud, go to www.cloud.sagemath.com and create

an account. After logging in, you will see all of your projects will be listed. Since it’s the first time,

click on NewProject... to create one. Give the project a name and click on CreateProject. Your

7



CHAPTER 1. INTRODUCTION

project now is created and listed under ShowingProject. For example, I have create a new project

name "Testing Sage Manual" among other projects. The screen will look like this:

(<> ) (2] [+ ]@ ressd coudsagematn.com

C | Read
g roeas. @ g s st x Bunts @y L9
X Projects O Deeted
o
Showing projects
Testing Sage Manual essthanamiruteago g Tuan Le (26 mintes ago) “
-
Sage Manual Tutorial 38 minutes ago e 15 e o e @
NumericalAnalysisAssignment 5 days ago & Tuan Le (1 month ago)
Stopped
examples 3vesks ago & Tuan Lo 13 weeks ago) n
Click on the project you want to work on, click Create or upload files...
> > | (2] [+ [@ rosa coud sagematn.com ¢ Jugead
i o @ s ssonvana ¢ Bt @y L

Eries (I Diog QFird

 setings

© Create new files in home directory of project
+ Create a new file or directory Name your file, folder or pastein a link
s tr2raniess
Select the type
3 SageMath Worksheet [ Jupyter Notebcok
[laTeX Docurent | >_Terminal | i Tasc List
[———

@ Upload files from your computer Drag and drop files

MFle |~ Fder
= Manage & Course

® Create a Ghatroom

'Drop ﬁles to upload

(or click)

where we can create a file of upload a file from our computer. Since we want to run Sage on cloud,

we create a new file name StartingWithSage, and select the type as SageMath Worksheet
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> | (2] [+ ]@ huosé coud sagemath.com

=
k- :
& IR TEN (,siirgimsace sagens

ects (@ e
les @ e

=1 wlefo ofc|z|=[=a|=[B«[a]+]s

Modes~ | @Hep~ | # [Datav Contol~ | Pogiem~ |z | Plois~ | Calculus~ | Linear~ | Graphs~ = NumberTheory~ | Rirgs~

We are now in a Sage file and ready to use it. Pay attention that we are now viewing the file
StartingWithSage.sagews located inside of the Testing Sage Manual project.

Localhost: The other way to run Sage is to download it and install it on your computer. Go to
www.sagemath.org/download and download Sage package. Install it and restart you computer.

Now run Sage (double click on its icon), Sage will automatically open up your brownser

1 [ Active Worksheets -~ Sage | [1]Acthe Worksheets -~ Sage » | [V]Sagebample Sage) % ||

)
m (s}

[ Starting,please wal:
C [} file:/{/Applications/Sage.app/Contents/Resources loading-page.htm|

The Sage server is currently starting. Please wait...
A page will 5e opened automatically.
In the mean time terminal sessions work normally.
You may safely close this window at any time, or navigate to somewhere else,
I* tne server is already running, fesl free to access the notebook interface at any tme.

If you think you have waited long enough...

Try view Log Under the server menu (or at the root of the menubar item's menu) which may give you some clues as to why t has not started.

I the problem pers'sts emailfor suppor:, ask a question on the question anc znswer site of try one of the other many avanues of support.

Did you know?
Show a random tp. Show all.

‘You can set up bash completion for Sage.

and your Sage notebook on your localhost, displayed all worksheets that you have been working

on
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10

J
m (s}

/ [3stertng, plesse wait.. ) [Z]acive Worksheets - sage | [£]urtited — Sage » V Essgcbampe sage) x|

%

C' | [} localhost:8080/home/admin/

SDQE. The Sage Notebook admin | tom: | Bublited | Lo  Setings | Hep | ReportaPmblen | Sigmaws
Search Worksheats

New Worksheet Upload Download All Active

Current Folder: Adtive Archived Trash

Avchie | Delete| | Sog | Download

Last Edited

Active Warksheets
(running) shapSexample
(running) 3d piot
Wellcome_To_Sage
NA Assignment 2
Untitled
Untitled

examplestt

NumericalAnalysisAssignment

assignment

Click on any worksheet that you want to continue work with or create a new worksheet. To create

a new worksheet, click on New Worksheet, give it a name a click on Rename. For example, let

create a new worksheet called SageExample

J
m (s

| [y staring plessewai. x| [/ Acive Worksheets — Sage » | [2]urtited — Sage +V sgebampe sagel x|
B

C [} localhost:8080/home/admin/17/

admin Topsle Home | Publied | Lo Sewings | Help | ReporiaProblers | Signowt

SDJE The Sage Notebook

save | Save & quit| Discard & quit

Untitled

: Gacjenin3D [ Workshet

%) Typeset () Load 3-D Live

Rename worksheet
Please enter a name for this
worksheet.
SageExamole|

Rename

Each horizontal rectangle is called a cell. Click on that and you are now ready to

Sage.

start learning
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Csurin, s [T £ — e - B
C' | [} localhost:8080/home /admin/16/ e =
SDJE The Sage Notebook admin Togsle Hom: | Publied | Log  Settngs | Help | ReporiaPmblen | Sisnout

Fle.. #)(Adion & Daa.. #)(sage #) Typeset () Load 3-D Live () Use jeva for 3D | Workshaet |

1.1.2 Getting Started

Just start typing input commands (a cell formatted as an input box will be automatically created).
For example, type 4 + 6. To evaluate this command or any other command(s) contained inside an
input box, simultaneously press SHIFT+ENTER, that is, the keys SHIFT and ENTER at the same
time (or click on the evaluate button if you are on localhost or run button if you on the cloud). Be
sure your mouse’s cursor is positioned inside the input box or else select the input box(es) that you

want to evaluate. This is how it looks like on localhost:

T MR [ e B
& - C | [ localhost:8080/home/admin/16/ el =
SDGE The Sage Notebook admin Toggle Home | Published | Log  Scttings | Help | ReporiaProblen | Sigmout

SageExample
[

e+ Typeset 0 Load 3-D Live ) Use jeva for 3-D ===

And on SageMath cloud:
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<> ] [@] [ + @ rwsh coud sagemath.com ¢ el

P ects (2 Testing Sage Manual X Brnte Oep L D ams ©
|:\ » e o olc|7 al=B|x At 8 | Ty
| Notes~ | @Hep~ | # | Cata | Contol~ | Pogame | o | Pts | Caulis~ | Lnear~ | Graphs= | NumberTiory= | Rirge~ ssage

Notice there is a slightly different between them.

1.1.3 Help Menu

SageMath provides an online help menu to answer many of your questions about the program.
One can search for a particular command expression in the Help menu located at the right top
conner.

For ony a brief description of plot, just evaluate plot?

[ sterting, lease wait.. % | [1Active Worksheets — Sage | []Sagebxample - sage % | NewTab x\_¥

]
w (s

& - C [ localhost:8080/home /admin/16/ awy

SDJE The Sage Notebook admin Togsle Home | Published | Log  Setings | Help | ReporiaPrblen | Simout

save | save & quit| Discard & quit

SageExample

etk 21, 2015, 24047 A by s

i) (o) (B35 & Typeset © Lowd 3D Liv @ Use ova for3D  Print | workshaet | Ect ] Tt | Rovisons | s | Pubis |

oo

46 )
1

X3

plot? )

File: 2ppIC Tisi Py
Type: <type function>

Definition: plot(funcs, exclude=Nore, filzlpha=0.5, filcolcr="automatic’, detect_poles=False, plot_poin's=200, thickness=1, adapiive_tclerance=0.01, rgbcolo=(0, C, 1),
adapive_recursion=5, asoect_rato="auromatic', apha=1, legend_abei=None, fil=False, *args, *kwds|

Docstring:
Use flot by writing
plot(¥, ...)

where X is a Sage object (or st of Sage objects) that either i callable and returns numbers that can be coerced to flozts, ar 1as a olot method that retur's a
GraphicPrinitive object.

There are many othr specialized 2D plot commards availatle ir Sage, such as plot_sLope_£ield, as well as varous graphics primitives like Azrow; type
sage.plot.plot? fora current list.

Type pot .opt ions for a dictionary of the defeult opions for plots. You can change this to charge the defaults for all future plots. Use plot. reset.() to reset to the default
options.

PLOT OPTIONS:
+ plot_points - (default 200) tre minimal number o ot points.

+ adapt ive_recursion - (default: 5) how mary levels of recarsion to ¢o before giving up when doing adepive refinement. Setting this to 0 disables adastive
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1.1.4 Sharing Sage Files

SageMath Cloud not only lets you work anywhere as long as you have an Internet connection, but
also allow you to share your file/project with your instructor or colleague. The only requirement is
that the one who you want to share Sage files with should also have an account. Once he/she has
it, you can give his/her permission to access your file. Notice that they have permission to access

a particular file you choose, not every files you have in your account.

Once you sign in, click on the project (under ShowingProject) that you want to share, then click
on setting. In Collaborators section, enter name or email address of your instructor or colleague,
a list of matching will show up. Choose the one you look for and click on Add selected. That
person will received an invitation email and now he/she can modify anything on that project. You

and your instructor now can make a conversation or video call through the window of that project.

1.2 Sage Commands

1.2.1 Naming

Built-in Sage commands, functions, constants, and other expressions begin with lowercase letters
and are (for the most part) one or more full-length English words (without capitalized). Further-
more, Sage is case sensitive. For example, plot, expand, print and show are valid function names.
sin, def, gcd and max are some of the standard mathematical abbreviations that are exceptions to

the full-length English word(s) rule.

User-defined functions and variables can be any mixture of uppercase and lowercase letter and
number. However, a name cannot begin with a number. User-defined functions may begin with a
upper case letter, but this is not requires. For example, F1, g1, myPlot, Sol and Tech are permis-

sible function names.
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1.2.2 Delimiters

Sage interprets various types of delimiters (brackets) differently.

e Parentheses, (): When there are multiple sets of parentheses in a formula, sometime math-
ematicians use brackets as a type of "strong parentheses". As it turns out, Sage needs the
brackets for other things, like list or table, so you have to always use parentheses for group-

ing inside of formulas.

e Square brackets, []: It is used to construct a data structure with group of value such as a list

or table.

1.2.3 Lists, Tables, and Arrays

Lists:
A list (or string) of elements can be defined in Sage as [eq, ey, ...,e,]. For example, the following

command defines v = [1,3,5,7,9] to be the list (set) of the first five odd positive integers.

sage: v=[1,3,5,7,9]

sage: V

To refer to the k'™ element in a list name expr, just evaluate expr[k]. For example, to refer to the

third element in v, we evaluate

sage: v [3]

7

It is also possible to define nested lists whose elements are themselves lists, call sublists. Each
sublist contains subelements. For example, the list w = [[1,3,5,7,9],[2,4,6,8,10]] contains two

elements, each of which is a list (first five odd and even positive integers.)
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sage: w=[[1,3,5,7,9]1,[2,4,6,8,10]]
sage: w

tft, 3, 5, 7, 91, [2, 4, 6, 8, 10]]

To refer to the k'™ subelement in the j*" sublist of expr, just evaluate expr[j][k]. For example, to

refer to the fourth subelement in the second sublist of w (or 8), we evaluate

sage: wl[1][3]

8

Tables:

A table is used to display a rectangular array or list as a table.

table(list)

For example, the following command displays v in a table.

sage: v=[[’a’,’b’,’¢c,?],[1,2,3],[4,5,6]]

sage: table(v)
a b c,
1 2 3
4 5 6

To highlight first row or first column, we set header_row = True or header_column = True,
respectively. To put a box around each cell, set frame = True. Also, by default, align is ’left’, we
can change it to 'center’ or ‘right’. For example, let highlight the first row of the table of v, put a

box around it, and align it center.

sage: table(v,header_row=True, frame=True, align=’center’)
o et - - — -+
l a | b | c, |
+===t+===+====+

10

11

12

13

14

15

17

18

19
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S

We can also use a loop inside table to create a table:

| table([(x,f(x)) for x in [0..b]]) |

where b is number of counters or steps of x.

sage: table([(i,2%i) for i in [0..3]],frame=True)

+-—--F+---+

+-—--F+---+

Arrays:

Arrays are created using NumPy, that means you have to make numpy commands available in

sage. You must first do: import numpy.

The following code will create an array called ArrayEx that contains the first 5 positive integers:

sage: import numpy

sage: ArrayEx=numpy.array([1,2,3,4,5])

sage: ArrayEx

[1 2 3 4 5]

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
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To create a multiple array with the shape of 3x2 with the first column contains the first 3 integer

and the second column contains double values of first column:

sage: import numpy 38
sage: ArrayMul=numpy.array([[j,2*xj] for j in range(3)]) 39
sage: ArrayMul 40
[[0 O] 41
[1 2] 4
[2 4]] 43

To refer to the k'™ subelement in the jth subarrays of Array, just evaluate Array/[j][k]. For exam-

ple, to refer to the second subelement in the third subarray of ArrayMul, we evaluate

sage: ArrayMul [2] [1] 44

4 45

Notice that the index starts from O.

1.2.4 Commenting

One can insert comments on any input line. The comments should be follow by # sign. For

example,

sage: # This command plot the graph of $sin$ function in red 46
color

sage: g=plot(sin(x),x,-3,3,figsize=3,color="red’) 47
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1.3 Algebra

1.3.1 Solving Equations

Sage uses the stand sysbols +, —,

%, /, | for addition, subtraction, multiplication, division, raising

powers (exponents), and factorials, respectively. Unlike other program, multiplication can only be

performed by * between factors.

To generate numerical output in decimal form, use the command n(expr, digits = 3) to display

to 3 decimal places.

NOTE: Sage can perform calculations to arbitrary precision and handle numbers that are arbitrar-

ily large or small.

sage: pi

pi

sage: n(pi,digits=4)
3.142

sage: n(pi,digits=20)
3.1415926535897932385
sage: 6°(572)
28430288029929701376

sage: factorial (5)

48

49

50

51

52

53

54

55

56
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120 57

Here are Sage rules regarding the use of equal signs:
1) A single equal sign (=) assigns a value to a variable. Thus, entering x = 3 means that x will be

assigned the value 3.

sage: z=3 58
sage: z 59
3 60

If we then evaluate 5+ z3, Sage will return 32

sage: b5+z~3 61

32 62

2) A double-equal sign (==) is a test of equality between two expressions. Since we previously

set x = 2, then evaluating x == 2 returns True, whereas evaluating x == 3 return False.
sage: x==2 63
x == 9 64
sage: x==3 65
x == 3 66

Another common usage of the double equal sign (==) is to solve equations, such as the command

solve([x*> +x+ 1 ==0],x).

sage: solve ([x~2+x+2==0],x) 67
I 68
x == -1/2%Ixsqrt(7) - 1/2, 69
x == 1/2*%I*xsqrt(7) - 1/2 70
] 71

Sage is a host of built-in commands to help the user solve equations and manipulate expressions.
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The command solve(lhs==rhs, var) solve the equation lhs==rhs for the variable var. For example,

the command below solves the quadratic equation x> —2 = 0 for x.

sage: solve(x~2-2==0,x)

[

x == -sqrt(2),
x == sqrt(2)
]

A system of m equations in n unknown can also be solved with using the same command, but

formatted as

sage: x,y = var(’x,y’)

sage: solve ([2*xx-y==3,x+4*xy==-2] ,x,y)

[x == (10/9), y == (-7/9)]

1.3.2 Useful Commands

In this section, we introduce few more popular commands in Sage.

e To simplify a function, we use .simplify_full() command :

|f(x).simplify_full() |

e To substitute a value ¢ for variable x of a function, we use .substitute(x = ¢) command :

e or substitute for multiple variable:

’ f(x).substitute(x=c) ‘

72

73

74

75

76

77

78

79

80

81
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’ f(x,y).substitute(x=c,y=d) ‘

e Define a function f(x) such that f(x) =f1 on (a,b) and f(x) =f2 on (¢, d), we use Piecewise
command . Notice that unlike the other command in Sage, Piecewise command has the first

letter capitalized:

[f(x)=Piecewise([[(a,b),f11,[(c,d),£2]]) |

e To solve an equation f(x) = 0 for x, we use solve command:

| solve(f(x)==0,x) |

e To define y as a function of x:

’ y(x)=function(’y’,x) ‘

e To factor a number or a function, we use factor() command :

’ factor(number) ‘

e To expand an expression, we use expand | ):

’ expand(expression) ‘

e To print a variable or a function f(x):

print f(x)

e To assign the right hand side of an equation contains in a variable u to x, we use .rhs()

command:
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1.4 Functions

There are two ways to represent functions in Sage, depending on how they are to used. Consider

the following example:

x2—x+4
x—1

Example 1.4.1. Enter the function into Sage.

Solution:

Method 1: An explicitly way to present f as a function of the argument x is to enter:
sage: f(x)=(x"2-x+4)/(x-1)
sage: f(x)
(x~2 - x + 4)/(x - 1)
To evaluate f(x) at x = 5, we use the command f(5)
sage: f(5)
6
Method 2: Define a function as:

sage: def f(x): return (x"2-x+4)/(x-1)
sage: f(x)

(x~2 - x + 4)/(x - 1)

Example 1.4.2. Enter the following piece-wise function into Sage:

tan(mx/4), it x| < 1
f(x) =

x, if [x| > 1

Solution:
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sage: def f(x):
if abs(x) <1:
return tan(mw*x/4)
else:

return x

23
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Chapter 2

Graphs, Limits, and Continuity of

Functions

2.1 Plotting Graphs

2.1.1 Basics Plot

In this section, we will discuss how to plot graphs using Sage and how to utilize its various plot
options. We will discuss in detail several options that will be useful in our study of calculus. The
basic syntax for plotting the graph of a function y = f(x) with x ranging in value from a to b is

plot(f,x,a,b).

plot(f(x),x,a,b)|

Example 2.1.1. Plot the graph of f(x) = 2x2—4x+2 along the interval [—3, 5]

Solution:

sage: g=plot (2*xx~2-4%x+2,x,-3,5)

25

90
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Example 2.1.2. Plot the graph of y = sin(2x) along the interval [—3, 3]

Solution:

sage: g=plot(sin(2%*x),x,-3,3) 91

Example 2.1.3. Plot the graphs of the two functions given in Example 1.1 and Example 1.2 prior
on the same set of axes to show their points of intersection.

Solution:

sage: g=plot ((2*%x~2-4*x+2,sin (2*x)) ,x,-3,5) 92
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cos(2x)

Example 2.1.4. Plot the graphs of f(x) = z"i:“T"l” and g(x) = —5~— on the same set of axes.

Solution:

sage: g=plot (((2*x~2+x+2)/(x+1) ,(cos(2*x))/2) ,x,-5,5) 93

-1000
-2000
-3000
-4000

Note that the graph of g(x) = cos(2x)/2 is displayed poorly in output above since its range (from
—1 to 1) is too small compared to the range of f(x) = (2x>+x+2)/(x+1). We can zoom in by

specify the value of vertical line using ymin and ymax.

sage: g=plot (((2*x~2+x+2)/(x+1) ,(cos(2*x))/2) ,x,-5,5,ymin=-10, 94

ymax=6)



28 CHAPTER 2. GRAPHS, LIMITS, AND CONTINUITY OF FUNCTIONS

T P s B I . ST B crm - R

4 2T T2 4

N\ ol

Example 2.1.5. Plot the graphs of the following functions.
@ f(x) = 25 (b) f(x) = 2sin(x) +cos(x) (o) f(x) =xe*+1Inx (d) f(x) = 25
Solution:

We recall that the natual base e is entered as e and that Inx is log(x). Note that sinx and cosx are

to be entered as sin(x) and cos(x).

(a)

sage: g=plot ((2*xx~2)/(2-x"2),x,-10,10,ymin=-4, ymax=4)

A WN R

(b)

sage: g=plot(2xsin(x)+cos(x),x,-2%pi,2*xpi)
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(©)
sage: g=plot(x*e~x+log(x),x,-3,3,ymin=0, ymax=10) 97
101
8F
6F
af
2t
2 2.5 3
(d)
sage: g=plot (2*x~2/(x"2+2) ,x,-4,4) 98

1.5
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2.1.2 Plot Options

Next, we will introduce various options that can be specified within the plot command.

e Adding a title to a graph:

’plot(f(x),x,a,b,title:"Here is a graph"

Use figsize option to control the plot size:

’ plot(f(x),x,a,b,figzie="a number’

Draw a graph with color:

’ plot(f(x),x,a,b, color= "a color’) ‘

Draw a graph and specify its thickness:

’ plot(f(x),x,a,b,color= "a color’, thickness=’a number’) ‘

Draw graph with specify the line style and legend_label:

’ plot(f(x),x,a,b,color= "a color’,linestyle="-", thickness="a number’,legend_label="f(x)’)

e Use frame option to puts a box around the graph

’ plot(f(x),x,a,b,frame=True) ‘

e Use axes_labels to verify the axes:

’ plot(f(x),x,a,b,axes_labels=["x-axis, units’,’y-axis, units’]) ‘

e To draw an ellipse, use implicit_plot command:
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implicit_plot(f(x),(x,a,b),(y,c,d)) |

Example 2.1.6. Plot(x3,x,—4,4) with a title:"Here is a graph"

Solution:

sage: g=plot(x~3,x,-4,4, title="Here_ isya,graph")

Here is a graph
60

40

Example 2.1.7. Plot(x?,x,—4,4) with different size.

Solution:

sage: g=plot(x~2,x,-4,4,figsize=2)

15
10

-4-3-2-1 1234

sage: g=plot(x~2,x,-4,4,figsize=4)

31

99

100

101
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Example 2.1.8. Plot(x?,x,—4,4) with purple color.

Solution:

sage: g=plot(x~2,x,-4,4, color= ’purple’,figsize=3) 102

Example 2.1.9. Plot(x?,x,—4,4) with color and thickness features.

Solution:

sage: g=plot(x~2,x,-4,4, color= ’green’, thickness=10,figsize 103

=3)
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Example 2.1.10. Plot(x?,x,—4,4) with multiple options.

Solution:

sage: g=plot(x~2,x,-4,4, color= ’green’,linestyle=’--"7, 104

thickness=10, legend_label="f(x)’,figsize=3)

o - ~
o 15} N
E S
‘ 10f 7
L 2 N
¢' ~§
_o' T ¢
B f(x) !
|||||l||||||f' .‘?.I....I....I
-4 -3 -2 -1 1 2 3 4

Example 2.1.11. Plot multiple function on a single graphic:

Solution:
sage: gl=plot(x~3,x,-4,4, title=’Here_isa,graph’) 105
sage: g2=plot(x~2,x,-4,4, color= ’green’,linestyle=’--", 106

thickness=2, legend_label="f(x)’,figsize=3)

sage: g3=plot(2*x~2,x,-4,4, color= ’purple’,figsize=3) 107
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sage: gl+g2+g3 108
Graphics object consisting of 3 graphics primitives 109
Here is a graph

60
-0 | gof

Example 2.1.12. Plot(x2, x,—4,4) with color, frame, and label.

Solution:

sage: g=plot(x~2,x,-4,4, color= ’green’,frame=True, 110

legend_label="f(x)’)

15:._""|""|""|IIII

10+

5t

0 bee——F—w—
-4 -3 -2 -1

Example 2.1.13. Plot(x?,x,—4,4) with axes.

Solution:

sage: g=plot(x~2,x,-4,4,axes_labels=[’x-axis,units’,’y-axis, 111

units’])



2.2. LIMITS

y-axis,units

: X-axis,units
4-3-2-1 1234

Example 2.1.14. Draw the ellipse % + ¥ =2

Solution:

sage: x,y=var(’x,y’)

sage: g=implicit_plot(x~2/2+y~2/4==2, (x, -3, 3), (y, -3,3))

3
2 E
1
0

2.2 Limits

2.2.1 Evaluating Limits

To compute the limit of function f(x) as x approaches a:

limit(f(x),x=a)

To compute the limit of function f(x) as x approaches a from the left (meaning x < a):

35

112

113



36

CHAPTER 2. GRAPHS, LIMITS, AND CONTINUITY OF FUNCTIONS

limit(f(x),x=a,dir="minus’) |

To compute the limit of function f(x) as x approaches a from the right (meaning x > a):

Example 2.2.1. Evaluate lim 2
x—1

Solution:

Following are tables of values of the function lim,_

limit(f(x),x=a,dir="plus’)

24 x+4
x+1

2x2 4 x+4

—r1r— When x is sufficiently close to 1.

From the left:

sage: def f(x): return(2*x~2+x+4)/(x+1)
sage: step=float (1/100)
sage: initial=float(9/10)
sage: table([(i*step+initial ,f(i*step+initial)) for i in
[1..1011)
0.91 3.43780104712
0.92 3.44416666667
0.93 3.45067357513
0.94 3.45731958763
0.95 3.4641025641
0.96 3.47102040816
0.97 3.47807106599
0.98 3.48525252525
0.99 3.49256281407
1.0 3.5
From the right:
sage: def f(x): return(2*x~2+x+4)/(x+1)

sage:

step=float (-1/100)

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129
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sage: initial=float (11/10) 130

sage: table([(i*step+initial ,f(i*step+initial)) for i in 131
[1..1011)
1.09 3.57234449761 132
1.08 3.56384615385 133
1.07 3.5554589372 134
1.06 3.54718446602 135
1.05 3.53902439024 136
1.04 3.53098039216 137
1.03 3.52305418719 138
1.02 3.51524752475 139
1.01 3.50756218905 140
1.0 3.5 141

From these tables, it is reasonable to expect that the limit is 3.5. Evaluating the limit confirm this:

sage: limit ((2*x~2+x+4)/(x+1), x=1) 142
7/2 143
Example 2.2.2. Evaluate il_t}} %ﬁ’l
Solution:
sage: limit ((2*xx~2+x-1)/(x+1) ,x=1) 144
1 145
Example 2.2.3. Evaluate lim ’;2:11

x—1-

Solution:
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sage:

2

Example 2.2.4. Evaluate lim

Solution:

sage:

2

CHAPTER 2. GRAPHS, LIMITS, AND CONTINUITY OF FUNCTIONS

limit ((x~2-1)/(x-1) ,x=1, dir=’minus’)

x3—1
x—1

x—1+

limit ((x~2-1)/(x-1) ,x=1, dir=’plus’)

Example 2.2.5. Evaluate lim,_, 3 )’Z—ié

Solution:

sage:

Infini

limit ((x+1)/(x+3) ,x=-3)

ty

Example 2.2.6. Show that f(x) =2 cos(1/x) does not have a limiting value as x approach 0.

Solution:

We define

sage:
sage:
sage:
sage:
[1.
0.09
0.08
0.07

0.06

f(x)=2xcos(1/x)
initial=float (1/10)
step=float (-1/100)
table ([(i*step+initial ,f(i*step+initial)) for i in
.811)
0.230559899091497
1.99559655835716
-0.296003263241933

-1.14916333703824

146

147

148

149

150

151

152

153

154

155

156

157

158

159
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0.05 0.816164123626784 160
0.04 1.98240562372695 161
0.03 -0.679423624807142 162
0.02 1.92993205698422 163

These values suggest that the limit does not exits. To make this clear, we consider the graph:

sage: g=plot(f(x),x,-1/10,1/10,figsize=3) 164

1
o

1
(=)
(@)
LEL
=T
o
T
=

This indicate that there are too much oscillation around x = 0. Let us try to zooming in around this

point:

sage: g=plot(f(x),x,-1/100,1/100,figsize=3) 165

Note that zooming in on this graph does not help. This indicates that the limit does not exist.

Example 2.2.7. Investigate the function f(x) = ﬁ as x — 0.
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Solution:
sage: limit(x/abs(x),x=0,dir="minus’) 166
-1 167
sage: limit(x/abs(x),x=0,dir=’plus’) 168
1 169

Since the left-hand and right-hand limits are not the same, we conclude that the limit does not exist.

sage: g=plot(x/abs(x),x,-3,3,figsize=3) 170
1-
0.5}
-3 -2 -1 [ 1 2 3
-0.5}
.

2.2.2 Limits Involving Trigonometric Functions

For trigonometric functions, Sage uses the same traditional notation in calculus.

Example 2.2.8. Evaluate lim —Sm)(fx)
x—0

Solution:

sage: limit ((sin(3%*x)/x),x=0) 171

3 172
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We can check the answer by graphing the function up close to the neighborhood of x =0

sage: g=plot((sin(3*x)/x),x,-1,1) 173

Example 2.2.9. Evaluate lim %
t—0
Solution:
sage: limit((tan(x))/abs(x),x=0,dir=’plus’) 174
1 175
sage: limit((tan(x))/abs(x),x=0,dir="minus’) 176
-1 177

Thus the limit does not exist. This can be clearly seen from the graph of the function below.

sage: g=plot((tan(x))/abs(x),x,-4,4,ymin=-10,ymax=10) 178
10f
5
4 3 2 3 4
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Example 2.2.10. Find

(a) lim o ®) lim, 3sinx
Solution:

sage: limit(1/cos(x), x=pi) 179
1 180
sage: limit (3~ (sin (x)),x=- pi/2) 181
1/3 182

1
=
o

I

1
W

U
N

CF
Ll
o
=
N
w

Example 2.2.11. Find lim stnx=sinc for valyes of ¢ = 0,71/6,7/47/3,7/2.
X—C

sinc
Solution:
sage: c=1[0,7t/6,7t/4,7/3,7/2]

sage : for 1 in range(5):

limit((sin x - sin c[i])/(sin c[i]),x=c][i])

1 1 1
09 272 \/Qa -2 \/g’ _1

Example 2.2.12. Find liII(l) % for various values of n.
X—

Solution:

Here is a table of limits for integer values of n ranging from 1 to 10. Notice that to avoid the

confusing between an integer n and n command which returns numerical value, we always try to

substitute integer n by 1 in sagecommandline:
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sage: table([(limit((cos(i*x)-1)/x"2,x=0))for i in [1..10]1])

-1/2 -2

-50

-9/2

-8

-25/2

-18

-49/2

-32 -81/2

A reasonable guess at a general formula for the answer would be limy_o(cos(nx) —1)/x* =

—n?/2. We can check this with values of n ranging from 10 to 20.

sage: table([([(limit((cos(ix*x)-1)/x"2,x=0),

[10..20]11)

(-50, -50)

(-121/2, -121/2)

(-72, -72)

(-169/2, -169/2)

(-98, -98)

(-225/2, -225/2)

(-128, -128)

(-289/2, -289/2)

(-162, -162)

(-361/2, -361/2)

(-200, -200)

For a mathematical proof, first take n = 1 and plot the graph

-i~2/2)])for i in

sage: g=plot((cos(x)-1)/x"2,x,-pi,pi,figsize=3)

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197
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The graph above confirms that the limit is —1/2.
For the general case, let t = nx so that x2 = T% Then note that x — 0 if and only if t — 0. Thus,

the limit can be evaluated in terms of t as

. cos(nx)—1 . cos(t)—1 5. cos(t)—1 n
lim ————— =lim———— =n"lim ——— = ——
X—0 x2 t—0 t2/n? t—0  t2 2

2.2.3 Limits Involving Infinity

Example 2.2.13. Evaluate lim =% and lim X2
Xx—00 VX242 x——00 VX242

Solution:

sage: 1limit ((3*x-2)/sqrt(x~2+2), x=infinity)

3

sage: limit ((3*x-2)/sqrt(x~2+2), x=-infinity)

-3

Observe how the two limits differ. The following graph confirms this.

sage: a=plot ((3*x-2)/sqrt(x~2+2), x,-15,15,figsize=3)

198

199

200

201

202
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Example 2.2.14. Evaluate lim f_‘;‘z
x—3~
Solution:
sage: limit(sqrt(9-x~2)/(x-3), x=3, dir=’minus’) 203
-Infinity 204

We plot the function over two different ranges to visually understand why the answer is -co. Notice

how the first range fails to show this.

sage: gl=plot(sqrt(9-x-2)/(x-3), x,1,3,ymin=-5,ymax=2,figsize 205

=3)

1 1.5 2 2.5 3

sage: g2=plot(sqrt(9-x~2)/(x-3), x,1,3,ymin=-100, ymax=2, 206

figsize=3)
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-60 -

-80

-100

Example 2.2.15. Evaluate lim cos(x)

X—00
Solution:
sage: limit(cos(x), x=infinity) 207
ind 208

Example 2.2.16. Find lim C‘;i

X—00
Solution:
sage: limit(cos(x)/x, x=infinity) 209
0 210
We can verify this limit by using the Squeeze Theorem. In this case, we take f(x) = —ﬁ, g(x) =

€, and h(x) = I?l\ Then f(x) < g(x) < h(x) since —1 < cosx < 1

sage: gl=plot((-1/abs(x)),x,0,10,ymin=-1,ymax=1,color=’green’, 2I1

figsize=3)

sage: g2=plot(cos(x)/x,x,0,10,ymin=-1,ymax=1,color="red’, 212
figsize=3)

sage: g3=plot(1l/abs(x),x,0,10,ymin=-1,ymax=1,color=’"purple’, 213

figsize=3)
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sage: g=gl+g2+g3 214

Since _|71\ and ﬁ both approach 0 as x — co, we conclude tha approaches zero as well.

cosx
t X

Example 2.2.17. Evaluate lim (3= — 1)

x—1+
Solution:
sage: limit(1/log(x)-1/(x-1),x=1, dir=’plus’) 215
1/2 216

We can graph the function near x = 1 to visually understand why the answer is 1/2:

sage: g=plot(1/log(x)-1/(x-1), x,0,1, figsize=3) 217

Note, however, that this example shows that 1/Inx and 1/(x — 1) both grow to oo at the same rate

asx — 1T
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Example 2.2.18. Let f(x) = ;‘22:1:11 Evaluate lim,_,; f(x) by substituting in various values of m
and n.
Solution:

sage: table([[limit((x~i-1)/(x"j-1),x=1) for i in [1..8]] for 218
j in [1..8]], align=’center’,frame=True, header_row=[’i_17,”
i_272,21.37,’1_4°,7i_52,°i_67,°1_77,71_8’], header_column=[’"’

,’j_i’,’j_z’,’j_s’,’j_4’,’j_5’;’j_6’,’j_77;’j_8’])

oo ++-— - - oo S S oo oo oo S + 219

it | i,2 | i3 | 124 | i_6 | i_6 | i_7 | i_.8 | 220
t=====4++=====4+=====4+=====4+=====4+=====+=====+=====+=====+ 221
lj_+ 11 ¢+ 12 1 3 | 4 | 5 | 6 | 7 | 8 | 222
toomo o o oo oo oo toomoo oo oo o tooooo + 223
[ j_2 Il /2 | 1+ | 3/2 | 2 | &/2 1 3 | 7/2 | 4 | 224
tooooo o tooooo toomoo tooooo tooooo tooooo tooooo tooooo + 225
[ 33 Il /3 |1 2/3 | t | 4/3 | 5/3 | 2 | 7/3 | 8/3 | 226
oo o oo oo S oo oo S +ooo - + 227
| j_4 11 1/4 | 1/2 | 3/4 | 1 | 5/4 | 3/2 1 7/4 |1 2 | 228
oo ++-——-- oo oo R oo oo S S + 229
| j_5 Il 1/5 | 2/5 | 3/5 | 4/56 | 1 | 6/5 | 7/5 | 8/5 | 230
toooo o o oo oo S oo oo S S + 231
| j_6 Il 1/6 | 1/3 | 1/2 | 2/3 | 6/6 | 1 | 7/6 | 4/3 | 232
tooooo o tooooo tooooo tooooo tooooo tooooo tooooo tooooo + 233
| j_7 | /7 | 2/7 | 3/7 | 4/7 | &5/7 | 6/7 | 1 | 8/7 | 234
oo - oo oo +ooo oo oo oo oo +ooo oo + 235
| j_8 Il 1/8 | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | 7/8 | 1 | 236

oo ++-— - - oo S oo oo oo oo oo oo + 237
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Can you guess a formula for lim,_, f(x) in term of m and n? Enter the command limit((x" —1)/(x™—1),x=1)

into an input cell and evaluate it to verify your conjecture.

Let us end this section with an example where the limit command is used to evaluate the derivative
of a function (in anticipation of commands introduced in the next chapter for computing derivaties).

By definition, the derivative of a function f at x (i,e,m the slope of its tangent line at x) is

f(x+Ax) —f(x)
Ax

f’ (X) = limax—0

Example 2.2.19. Find the derivative of f(x) 1 according to the limit definition.

~ i
Solution:
We first exam the derivative by tabulating values of the difference quotient, W, for some
arbitrarily chosen values of Ax:
sage: f(x)= 1/(4%x) 238
sage: var(’c?’) 239
c 240

sage: c=[10~(-1), 10~(-2), 10-(-4), 10~(-5), 10~(-6), 10~(-8)] 241

sage: table([(n(cl[i],digits=4),((f(x+c[i])-f(x))/c[i])) for i 242

in [0..511)

0.1000 25/(10*xx + 1) - 5/2/x 243
0.01000 2500/ (100*x + 1) - 25/x 244
0.0001000 25000000/ (10000*x + 1) - 2500/x 245
0.00001000 2500000000/ (100000*xx + 1) - 25000/x 246
1.000e-6 250000000000/ (1000000*x + 1) - 250000/x 247
1.000e-8 2500000000000000/(100000000*x + 1) - 25000000/x 248

This table suggest that f/(x) = —1/(4x?) in the limit as Deltax — 0. We confirm this with Sage:

sage: limit ((f(x+Deltax)-f(x))/Deltax,Deltax=0) 249
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-1/4/x"2

2.3 Continuity

Recall that a function is countinous at x = a if and only if lim,_,of(x) = f(a). Graphically, this
means that there is no break (or jump) in the graph of f at the point (a,f(a)). It is not possible to
indicate this discontinuity using computer graphics for the situation whre the limit exists and the
function is defined at a but the limit is not equal to f(a). For other cases of discontinuity, computer
graphics are very helpful.

To verify if a given function is continuous at a point, we evaluate its limit there and check if this

limit is equal to the value of the function.

Example 2.3.1. Show that the function f(x) = x> — 1 is continuous everywhere.
Solution:
We could draw the graph and observe this fact. On the other hand, we can get Sage to check

continuity:

sage: def f(x): return x~3-1
sage: var(’c’)

c

sage: bool(limit (f(x),x=c)==£f(c))

True

This means that lim,_,. f(x) = f(c) and hence f is continuous everywhere.

Example 2.3.2. Find point of discontinuity for each of the followin function:

ol gfx £ ]

x—1°

(a) Let f(x) =
2, ifx=1

250

251

252

253

254

255
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ol ifx £ 1
(b) Le g(x) =

6, ifx=1
Solution:

The piece-wise functions can be defined by using if, else:
(a) Define the function f:
sage: def f(x):
if x<>1:
return (x> —1)/(x—1)
else:
return 2

Then we can check continuity of f at x = 1.

sage : bool(limit(f(x),x=1)==f(1))
True
Hence, the function is continuous at x = 1. For continuity at other points, we observe that the

x2—1

rational function =

simplifies to x4 1 in this case (factor the numerator!) and thus is continuous
at any point except x = 1. Thus, f is continuous everywhere. We can also confirm this by examining

the graph of f below.

sage: g=plot(f(x),x,-6,6,figsize=3) 256

6

4

2.
IH‘IH‘I‘/"HIH‘IH‘I

(b) As in part a, we define the function and consider continuity of g at x = 1:



52 CHAPTER 2. GRAPHS, LIMITS, AND CONTINUITY OF FUNCTIONS

sage: def g(x):
if x<>1:
return (x> —1)/(x—1)
else:
return 6

sage: bool(limit(g(x),x=1)==g(1))
False

Thus, g is NOT continuous at x = 1. For continuity at other point, we again observe that the ratio-

x2—1
x—1

nal function =x+ 1 and thus is continuous for x # 1.
Caution: The plot of the graph of g given below indicates (incorrectly) that g is continuous every-

where! Care must be taken when examining Sage plots to draw conclusion about continuity.

sage: g=plot(g(x),x,-6,6,figsize=3) 257
6
4
2_
|...|...|./'...|...|...|
i 2 4 6
cos(1), if x £ 0
Example 2.3.3. Let f(x) = . Prove that for any number k between —1 and 1

0,ifx=0

there exists a value for c such that f(c) = k.

Solution:

Note: observe that f is not continous at x = 0 so the converse of the Intermediate Value Theorem
does not hold.

For k = 0, we choose ¢ = 0 so that f(c) = 0. For any nonzero k between —1 and 1, define y =
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cos~ 'k (using the principal domain of the cos function) and let ¢ = 1/y. Then f(c) =cos(1/c) =

cosy = k. The graph of f following shows that there are in fact infinitely many choices for c.

sage: g=plot(cos(1/x),x,-pi,pi,figsize=3) 258
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Chapter 3

Differentiation

3.1 The Derivative

In this section, we introduce few more popular commands in Sage.

e To calculate the derivative of a function, use diff() or .derivative() command:

|diff(f(x)) or f(x).derivative()

¢ To differentiate f(x,y) with respects to x:

diff(f(x,y),x)

e To compute the n derivative respect to x:

diff(f(x),x,n)

3.1.1 Slope of Tangent

The most fundamental concepts in calculus is the derivative. Its definition is given by

f(a) :]limo f(h+a)—f(a)

55
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where geometrically f/(a) is the slope of the line tangent to the graph of f(x) at x = a, provided
that the limit exists. We can view this graphically in the illustration below, where the tangent line

(shown in blue) is viewed as a limit of secant lines (one shown in red) as h — 0.

Example 3.1.1. Calculate the derivative of f(x) = "3—4 at x = 1 using the point-wise definition of a

derivative.
Solution:
We first use the table command to tabulate slopes of secant lines passing through the points at
a=1and a+h =1+ h by choosing arbitrarily small values for h (taken as reciprocal powers of

10)

sage: a,x,i=var(’a,x,i’)

sage: f(x)=x"4/3

sage: a=1

sage: table([(n(1/(10"1i),digits=4), n((f(a+1/(10~i))-f(a))

/(1/(10~1)),digits=4)) for i in [1..5]1)

0.1000 1.547
0.01000 1.353
0.001000 1.335
0.0001000 1.334

0.00001000 1.333

259

260

261

262

263

264

265

266

267
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Note that our use of the table command, which displays a list as an array of rectangular cells. From

the table output, we may conclude that f'(1) =4/3. A more rigorous approach is to algebraically

simplify the difference quotient, —f(Hh}):f(“)

sage: ((f(a+h)-f(a))/h).simplify_£full () 268
1/3*h~3 + 4/3%h~2 + 2xh + 4/3 269
It is now clear that MLW — % as h — 0. This can be checked using Sage limit command:

sage: limit ((f(a+h)-f(a))/h,h=0) 270
4/3 271

Below is a plot of the graph of f(x) (in black) and its corresponding tangent line (in blue), which

also confirms our answer:

sage: gl=plot(f(x),x,-3,3,ymin=-3,ymax=5,figsize=3,color="’ 272
black?’)
sage: ff(x)=diff (£f(x)) 273

sage: g2=plot(ff(a)*(x-a)+f(a),x,-3,3,ymin=-3,ymax=5,figsize 274

=3)

Recall that the tangent line of f(x) at x = a is given by:

y="f(a)(x—a)+f(a)
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3.1.2 Derivative as a Function

The derivative is best represented of as a slope function, one that gives the slope of the tangent line

at any point on the graph of f(x) where this slope exists:

Fix) = }llin}) f(x+h)—"f(x)

Example 3.1.2. Compute the derivative of cos(x?) and evaluate it at x = \/71/4

Solution:

sage: f(x)=cos(x"2) 275
sage: diff (f(x)).substitute(x=sqrt(pi/4)) 276
-1/2*xsqrt (2) *sqrt (pi) 277

where substitute() command inserts values of variable in () into function f’(x).
Note: Observe that the derivative of cos(x?) is NOT —sin(x?) but —2xsin(x?). This is because
cos(x?) is a composite function. It’s a rule for differentiating composite functions, known as the

Chain Rules.

cosX if x £ ()
Example 3.1.3. Compute the derivative of f(x) =

Difx=0

Solution:
To define functions described by two different formulas over separate domains, we employ Sage

Piecewise command.

sage: fl(x)=cos(x)/x 278
sage: f2(x)=0 279
sage: f = Piecewise ([[(0,0),f2],[(-infinity,0),f1]1,[(0, 280

infinity),f1]1] )

sage: f.derivative () 281
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Piecewise defined function with 3 parts, [[(0, 0), x |--> 0], 282
[(-Infinity, O0), x |--> -sin(x)/x - cos(x)/x~2], [(0O, +
Infinity), x |--> -sin(x)/x - cos(x)/x~2]]

Note: It is clear for x # 0 that the derivative is —m;ﬁ — “%Z(X) as a result of the Quotient Rule .

Notice that the fact that f(0) = 0 does not mean that f is a constant.

A plot of the graph of f(x) reveals that it is discontinuous at x = 0, and thus not differentiable

there:

0.5F

1’.\...1....:....[\..1
10 N4 ;\/5 10

Example 3.1.4. Find the equation of the tangent line to the graph of f(x) = /2x+2 at x = 2.
Solution:

Remember that the tangent line to a function f(x) at x = a is L(x) = f(a) + f'(a)(x — a). Hear,

a=2:

sage: f(x)=sqrt(2*x+2) 283
sage: L(x)=f(2)+diff (f(x)).substitute (x=2)*(x-2) 284
sage: L(x) 285
1/6*xsqrt(6) *(x - 2) + sqrt(6) 286

To see that L(x) is indeed the desired tangent line, we will plot f and L together:

sage: g=plot((f(x),L(x)),x,0,4,figsize=3) 287
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Example 3.1.5. Find an equation of the line passing through the point P(2,—3) and tangent to the
graph of f(x) =x%+1

Solution:

Let us refer to Q(a,f(a)) as the point of tangentcy for our desired tangent line. To determine Q,
we compute the slope of our desired tangent line from two different perspectives:

Slope of line segment PQ:

sage: var(’a’)

a

sage: f(x)=x"2+1

sage: m=(f(a)-(-3))/(a-2)
sage: m

(a”2 + 4)/(a - 2)
Derivative of f(x) at x = a:

sage: f(x)=x"2+1
sage: diff (f(x)).substitute (x=a)

2%a
Equating the two formulas for slope above and solving for a yields:

sage: solve(m==diff (f(x)).substitute(x=a),a)
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[

a == -2xsqrt(2) + 2,
a == 2xsqrt(2) + 2

]

Since there are two valid solutions for a, we have in fact found two such tangent lines. Their

equations are given by:

sage:

Yy =f'(a)(x—a)+f(a)asa —2—2v2

yo =f'(a)(x—a) =f(a) as a —2+2V2

y1l(x)=(diff (f(x)).substitute (x=a)*(x-a)+f(x).substitute

x=a)) .substitute (a=2*sqrt(2)+2) .simplify_£full ()

sage:

y1(x)

4xx*(sqrt(2) + 1) - 8xsqrt(2) - 11

sage:

y2(x)=(diff (f(x)) .substitute(x=a)*(x-a)+f(x).substitute

x=a)) .substitute(a=-2*%sqrt (2)+2) .simplify_full ()

sage:

y2(x)

-4*xx*(sqrt(2) - 1) + 8xsqrt(2) - 11

Plotting these tangent lines together with the graph of f(x) confirms that our solution is correct:

sage:

g=plot ((f(x),y1(x),y2(x)),x,-6,6,figsize=3)
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3.2 Higher-Order Derivatives

Suppose we are interested in pursuing higher order derivatives of a function. The reasons are they
relate to applications of minimum and maximum values, physical applications such as velocity and

acceleration, or finding points of inflection.

Example 3.2.1. Compute the first eight derivatives of f(x) = cos(x). What is the 255" derivative
of f?
Solution:

Here are the first eight derivative of f:

sage: f(x)=cos(x) 309

sage: ([diff(f(x),x,i) for i in [1..8]]1) 310

[-sin(x), -cos(x), sin(x), cos(x), -sin(x), -cos(x), sin(x), 311
cos (x)]

We observe from the output that the higher-order derivatives of f are periodic modulo 4, which

means they repeat every four derivative. Since 255 has remainder 3 divided by 4, it follows that

£253) (x) = f3) (x) = sin(x)

Of course, Sage can compute this derivative (see output below), but the pattern above gives us a
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more in-depth understanding of the higher-order derivatives of cos(x).

sage:

sin(x)

diff (f(x),x,255)

Example 3.2.2. Compute the first three derivatives of f(x) = xsin(x)

Solution:

63

We use the command diff(f(x),x,n) to compute the nth derivative of f. Here, we setn = 1,2,3

sage: f(x)=x*sin(x)

sage: diff (f(x),x)

x*xcos(x) + sin(x)

sage: diff (f(x),x,2)

-x*xsin(x) + 2x*cos(x)

sage: diff (f(x),x,3)

-x*cos(x) - 3*xsin(x)

A quicker way to generate a list of higher-order derivatives is to use the table command. For

example, here is a list of the first five derivatives of f:

sage:
[x*xcos(x) + sin(x),

, x*sin(x)

- 4xcos(x),

([diff (f(x),x,1i) for i in [1..5]11])

-x*sin(x) + 2x*cos(x),

-x*xcos (x)

x*xcos(x) + bB*sin(x)]

3.3 Chain Rule and Implicit Differentiation

In this section, we demonstrate not only how Sage uses the Chain Rule to differentiate compos-

ite functions but also to compute derivatives of functions defined implicitly by equations where

solving for the dependent variable is not desirable.

- 3xsin(x)
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Example 3.3.1. Find all horizontal tangents of f(x) = 4/ zz’iljr—z;‘fll
Solution:

We first compute the derivative of f, which requires the Chain Rule.

sage: f(x)=sqrt((2*xx"4-2%x+1)/(2*xx~4+x+1)) 323
sage: diff (f(x)).simplify_full () 324
3/2%(6*xx~4 - 1)/((4%x"8 + 4%xx°5 + 4xx~4 + x~2 + 2%x + 1)*sqrt 325

((2%xx~4 - 2xx + 1)/(2*x"4 + x + 1)))

Horizontal tangents have zero slope and so it suffices to solve f/(x) = 0 for x.

sage: solve(diff (f(x))==0,x) 326
[ 327
x == 1/6*I%6~(3/4), 328
X == -1/6%x6"(3/4), 329
x == -1/6%xI%6~(3/4), 330
x == 1/6%6~(3/4) 331
] 332

Observe that the solutions above are nothing more than the zeros of the numerator of f/(x). We
ignore the first and third solutions listed above, which are imaginary. Hence, x = % *x64 =0.6389

and x = —% £61 = —0.6389. A plot of the graph of f below confirms our solution.

sage: g=plot(f(x),x,-2,2,figsize=3) 333
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Example 3.3.2. Find all horizontal tangents of the lemniscate described by 4(x? +y?)? = 15(x*> —
y?)

Solution:

Implicit differentiation is required here to compute %E, which involves first differentiating the

lemniscate equation and then solving for our derivative. Observe that we make the substitution

y — y(x), which makes explicit our assumption that y depends on x.

sage: var(’x,y’)

(x, y)

sage: y(x)=function(’y’) (x)

sage: eq=4*x(x"2+y~2) ~2==15x(x"2-y"~2)

sage: eq.substitute (y=y(x))

x |--> 4x(x"2 + y(x)~2)"2 == 15*%x~2 - 156*xy(x)"2

sage: diff (eq,x)

x |--> 16%(x"2 + y(x)"2)*(y(x)*D[0] (y) (x) + x) == -30%y(x)*D

[0] (y) (x) + 30%*x

sage: solve(diff(eq,x),diff(y(x)))
L
D[0] (y) (x) == -(8*%x"3 + 8xxxy(x)~2 - 15*%x)/(8*%xy(x)~3 + (8*xx"2

+ 15) *xy(x))
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Notice that D[0] (y) (x) is the first derivative of y(x) or y’(x).
To find horizontals, it suffices to find where the numerator of y’(x) vanishes (since the denominator

never vanishes except when y = 0). Thus, we solve the system of equations

15x—8x3 —8xy? =0

4(x>+y?)? =15(x* —y?)

since the solutions must also lie on the lemniscate.

sage: var(’x,y’)

(x, y)

sage: solve ([4x(x72+y~2)"2==15%(x"2-y~2) ,15%x-8*x"3-8*xx*y
~2==0] ,x,y)

[

[x == 0, y == -1/2%I*sqrt(15)],

[x == 0, y == 1/2%Ixsqrt(15)],

[x == 0, y == 0],

[x == -3/8xsqrt(5)*sqrt(2), y == -1/8%sqrt(15)*sqrt(2)],

[x == -3/8%sqrt(5)*sqrt(2), y == 1/8xsqrt (15)*sqrt(2)],

[x == 3/8%sqrt(5)*sqrt(2), y == -1/8%sqrt(15)*sqrt(2)],

[x == 3/8%sqrt (5)*sqrt(2), == 1/8xsqrt (15) *sqrt (2)]

]

From the output, we see that the last four solutions are valid:

(—3/8xsqrt(5) xsqrt(2),—1/8 xsqrt(15) xsqrt(2)) ~ (—1.186,—0.685),

(—3/8*sqrt(5) xsqrt(2),1/8xsqrt(15) xsqrt(2)),

(3/8xsqrt(5) xsqrt(2),—1/8 xsqrt(15) xsqrt(2)),
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(3/8xsqrt(5) xsqrt(2),1/8xsqrt(15) xsqrt(2))

which can be confirmed by inspecting the graph of the lemniscate below. Observe the sysmmetry

in the solutions.

sage: x,y=var(’x,y’) 358
sage: g=implicit_plot (4*x(x~2+y~2) "2==16%x(x"2-y~2), (x,-3,3),(y 359

,-2,2) ,figsize=3)

2_4' I I I I I H
OO
af ;
_2:_fo1x[xxxxlxxxxlxxxxlxxxxl H

3.4 Derivatives of Inverse, Exponential and Logarithmic Func-

tions

3.4.1 Inverse Function

Recall that a function g(x) is the inverse of a given function f(x) if f(g(x)) = g(f(x)) = x. The
inverse of f(x) is denoted by f~!(x). We note that a necessary and sufficient condition for a
function to have an inverse is that it must be one-to-one. On the other hand, a function is one-to-

one if it is strictly increasing or strictly decreasing throughout its domain.

Example 3.4.1. Determine if the function f(x) = 2x> —2x + | has an inverse on the domain
(—o0,00). If it exists, then find the inverse.

Solution:
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We note that f(0) = f(1) = 1. Thus, f is not one-to-one. We can also plot the graph of f and note

that it fails the Horizontal Line Test since it is not increasing on its domain.

sage: f(x)=2%x"2-2%x+1 360

sage: g=plot(f(x),x,-1,2,figsize=3) 361

However, observe that if we restrict the domain of f to an interval where f is either increasing or

decreasing, say [1, 0], then its inverse exists:
sage: g=plot(f(x),x,1,5,figsize=3) 362

40
35
30
25
20
15
10

(O]

To find the inverse on this restricted domain, let y = f~!(x), Then f(y) = x. Thus, we solve for y

from the equation f(y) = x.

sage: var(’x,y’) 363

(x, y) 364
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sage: sol=solve (f(y)==x,y) 365
sage: sol 366
I 367
y == -1/2%sqrt(2*x - 1) + 1/2, 368
y == 1/2%xsqrt(2*x - 1) + 1/2 369
] 370

Note that Sage gives two solotions. Only the second one is valid because it has range [1,00],

which agrees with the domain of f. Therefore,

f_l(x):%(l—f—\/bc—l)

To extract this solution from the above output, we use the syntax below and denote the inverse

function in Sage by g(x).

sage: g(x)=sol[1].rhs () 371
sage: g(x) 372
1/2*sqrt (2*x - 1) + 1/2 373

Note: One can also attempt to verify g(f(x)) = x. However, Sage cannot confirm this identity:

sage: g(f(x)).simplify_£full () 374

1/2xsqrt (4*xx~2 - 4*x + 1) + 1/2 375

Lastly, a plot of the graph of f(x) and g(x) shows their expected symmetry about the diagonal line
y=x.

sage: h=plot ((f(x),g(x)),x,1/2,5,figsize=3,ymin=0, ymax=>5) 376
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Example 3.4.2. Determine if the function f(x) = 2x> 4 3x has an inverse. If it exists, then compute
(f1)'(2).
Solution:
Since f/(x) = 6x%+3, f is increasing on its domain therefore it has an inverse. Again, we can solve

for this inverse as in the previous example:

sage: var(’f,g,x,y,so0l”’)

(f, g, x, y, sol)

sage: f(x)=2%xx"3+3%x

sage: sol=solve(f(y)==x,y)

sage: sol

[

y == -1/2x(1/4*x + 1/4%sqrt(x~2 + 2))~(1/3)*(I*xsqrt(3) + 1) +
1/4%(-I*sqrt(3) + 1)/(1/4*x + 1/4*sqrt(x~2 + 2))~(1/3),

y == -1/2x(1/4*x + 1/4*xsqrt(x~2 + 2))~(1/3)*(-I*xsqrt(3) + 1) +
1/4%(Ixsqrt(3) + 1)/(1/4xx + 1/4xsqrt(x~2 + 2))~(1/3),

y == (1/4*x + 1/4xsqrt(x~2 + 2))"~(1/3) - 1/2/(1/4*x + 1/4xsqrt
(x~2 + 2))~(1/3)

]

Only the third solution listed above is valid, being real valued. Thus:
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Denote our inverse as:

sage: g(x)=sol[2].rhs()

sage: g(x)

(1/4%xx + 1/4%sqrt(x~2 + 2))~(1/3) - 1/2/(1/4xx + 1/4xsqrt(x~2
+ 2))°(1/3)

Lastly, we compute g’(2):

sage: n(diff(g(x)).substitute(x=2),digits=3)

0.207

3.4.2 Exponential and Logarithmic Functions

One of the most important functions in mathematics and its applications is the exponential function.

In particular, the natual exponential function f(x) = e*, where
e=lim(1+x)/*~2718
x—0

In Sage, we use the lower letter e to denote the Euler number:

sage: limit ((1+x)~(1/x),x=0)

e

Every exponential function f(x) = a*, a # 1, a > 0, has domain (—oo,00) and range (0,00). It
is also one-to-one on its domain. Hence, it has an inverse. The inverse of an exponential function
f(x) = a* is called the logarithm function and its denoted by g(x) = logqx. The inverse of the
natural exponential function is denoted by g(x) = Inx and is called the natural logarithm. In Sage,

we use log(x) for Inx. Below is a plot of the graphs of e* and Inx in red and green, respectively.
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Observe their symmetry about the dashed line y = x.

sage: x=var(’x’) 394

sage: hl=plot(e~x,x,-2,5,figsize=3,color="red’,ymin=-2,ymax=5) 395

sage: h2=plot(log(x),x,-2,5,figsize=3,color="green’,ymin=-2, 396
ymax=>5)
sage: h3=plot(x, x,-2,5,figsize=3,1linestyle=’--’,color="black’ 397

,ymin=-2,ymax=5)

Please refer to Section 3.9 of Rogawski’s Calculus book for derivative formulas of general expo-

nential and logarithmic functions.

Example 3.4.3. Compute derivative of the following functions.
(@) f(x)=2* (b)f(x)=2x24+€* (c) f(x) =1nx>
Solution:

We will input the functions directly and use the command diff. Note that log(x?) should read as

nx?,

(a)

sage: diff (2°x) 398
2~x*xlog (2) 399

(b)
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sage: diff (2*x"2+e"x) 400
4xx + e”x 401
(©)

sage: diff (log(x~3)) 402
3/x 403

Example 3.4.4. Find point on the graph of f(x) = x?e**3 4+ 3x where the tangent lines are parallel

to the liney =3x—1.
Solution:

Since the slope of the given line equals 3 it suffices to solve f/(x) = 3 for x to locate these points(s).

sage: var(’f, sol’) 404
(f, sol) 405
sage: f(x)=x"2xe~(3*xx+5) +3*x 406
sage: sol=solve(diff (f(x))==3,x) 407
sage: sol 408
I 409
x == (-2/3), 410
x == 0 411
] 412

Hence, there are two solotion: (x1,f(x1)) and (x2,f(x2)):

sage: var(’xl,x2’) 413
(x1, x2) 414
sage: x1=s0l[0].rhs() 415
sage: x2=so0l[1].rhs () 416
sage: f(x1) 417

4/9%e~3 - 2 418



74 CHAPTER 3. DIFFERENTIATION

sage: f(x2) 419

0 420
The plot below confirms that the two corresponding tangent lines (in green) are indeed parallel.

sage: yl= f(x1)+(diff (£(x)).substitute (x=x1))*(x-x1) 421

sage: y2= f(x2)+(diff (f(x)).substitute (x=x2))*(x-x2) 422

sage: gl=plot(yl,x,-1,1,color="green’,figsize=3,ymin=-5, ymax 423
=15)

sage: g2=plot(f(x),x,-1,1,figsize=3,ymin=-5,ymax=15) 424

sage: g3=plot(y2,x,-1,1,color="green’,figsize=3,ymin=-5, ymax 425

=15)
15f

10}




Chapter 4

Applications of the Derivative

We have seen how the derivative of a function is itself a function. This idea leads to many possible
applications, some of which we will now explore with Sage to demonstrate its ability to manipulate

and calculate complicated or tedious expressions.

4.1 Related Rates

Also notice that Sage will display the first derivative of function S(t) as:
DI0J(S)(t) = diff(S(t))

Example 4.1.1. Let us assume a rubber ball is sitting out in the sun and that the heat causes
its surface area the increase at the rate of 3 square centimeters per hour. How fast is the radius
increasing when the radius is 2 centimeters?

To slove this problem, we will need the formula for the surface area of a sphere: S = 47tr?. Here,

the surface area S and the radius r are expressed as functions of t (time).

sage: var(’t,S,r’)
(t, S, r)

sage: r(t)=function(’r’,t)
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sage: S(t)=function(’S’,t) 429
sage: sa=S(t)==4x*pix(r(t))-2 430
sage: dsa=diff(sa,t) 431
sage: dsa 432
D[0](S)(t) == 8xpixr(t)*D[0](r) (t) 433

Now differentiate this formula and solve for r/(t):

sage: sol=solve(dsa, diff(r(t))) 434
sage: sol 435
[ 436
D[0I(r) (t) == 1/8*D[0]1(S) (t)/(pixr(t)) 437
] 438

Since the output above is a nested list (each set of square braces denotes a list) and our solution,

%, represent the second element of the first list, we can extract it in order to define r/(t) as
follows:
sage: Dr(t)=sol[0].rhs () 439
sage: Dr(t) 440
1/8*D[0](S) (t)/(pix*xr(t)) 441

Note: we will use Df(x) to denote the first derivative of function f(x). As above, Dr(t) =1/(t).

Since we are given that S’(t) = 3 and r(t) = 2, we substitute these into the formula for r/(t):

sage: n(Dr(t) .substitute(r(t)==2, diff(S(t),t)==3),digits=3) 442

0.0597 443

Therefore, when the radius is 2, it is increasing at the rate of about 0.0597 cm per hour.
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4.2 Extrema

We now consider how to find critical points and inflection points to determine extrema. Recall
that critical points of a function are those for which f/(x) = 0 or for which f/(x) does not exist.
Similarly, inflection points occur where either f”(x) = 0 or where f”(x) does not exist. Extrema
occur at critical points, but not all critical points are extrema. An inflection point is a point (c,f(c))
where concavity changes; this occurs where f”(¢) = 0 or where f”(x) does not exist, and like

critical points, not all points where f”(x) = 0 (or where f”(x) does not exist) are inflection points.

Example 4.2.1. Find all local extrema and inflection points of f(x) = 1/(x*+1)
Solution:

We first define f(x) in Sage:

sage: var(’x,f’)
(x, 1)
sage: f(x)=1/(2*xx"~2+1)

sage: g=plot(f(x),x,-2,2,figsize=3,ymin=0, ymax=1)

To find extrema of f, we locate its critical points, that is, those points where f/(x) =0 or f’(x) is

undefined. We can solve the first case using Sage:

sage: Df(x)=diff (f(x),x)

sage: Df(x)
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-4xx/(2%x"2 + 1) "2 450
sage: solve(Df(x)==0,x) 451
[ 452
x == 0 453
] 454

Since f’(x) is defined everywhere, it follows that there is exactly one critical point at x = 0, and at
that point, there is a maximum, as can be seen from the graph above. We could also have used the

second derivative test to confirm this:

sage: diff (f(x),x,2).substitute (x=0) 455

-4 456

Since the second derivative is negative at x = 0, the curve is concave down there. This means that

we have a local maximum at x = 0.

To find the points of inflection, we locate zeros of the second derivative:

sage: solve(diff (f(x),x,2)==0,x) 457
[ 458
x == -1/6%sqrt(6), 459
x == 1/6*sqrt (6) 460
] 461

To determine if these solutions are indeed inflection points, we need to check if there is a sign

change in f”(x) on either side of each.

sage: g=plot(diff(f(x),x,2),x,-2,2,figsize=3) 462
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N

Notice from the graph above that f”(x) changes from positive to negative at x = —76 and from
negative to positive at x = %. Thus, both point (—\/Tg,f (—%)) and (@,f(%)) are inflection

points.

4.3 Optimization

Extreme values of a function occur where the first derivative f'(x) = 0 or f’(x) does not exist.
This idea allows us to find maximum and minimum, a very important and widely applied in many
applications. For example, in business, people want to maximize the profits and minimize the costs.
In auto industry, we want to know what shape of the car will minimize the air resistant. There are
many similar problems exist in many other fields. We will go over some of these applications in

this chapter.

4.3.1 Traffic Flow

Example 4.3.1. Traffic flow along a major highway in Philly between 6 AM and 10 AM can be
modeled by the function f(t) = 20t —40+/t + 50 (in miles per hour), where t = 0 corresponds to 6
AM. Determine when the minimum traffic flow occurs.

Solution:

Let us find plot the graph of f(t)

sage: var(’f,t’)

463
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(f, t) 464
sage: f(t)= 20%t-40*sqrt(t)+50 465
sage: g=plot(f(t),t,0,4,figsize=3) 466

50¢
45
40}

35}

30F

Note from the plot above that the average speed is decreasing between 6 AM to 7 AM and increas-
ing after 7 AM.

At 6 AM the average speed is:

sage: f(0) 467

50 468
or 50 mph. At 7 AM the average speed is:

sage: f (1) 469

30 470

or 30 mph. To see how the average speed varies throughout the day we make a table of these values

at each half hour from 6 AM to 10 AM:

sage: step=float(1/2) 471
sage: initial=float (0) 472
sage: table([(i*step+initial ,n(f(i*xstep+initial) ,digits=4)) 473

for i in [0..8]],align="1eft’)

0.0 50.00 474
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0.5 31.72
1.0 30.00
1.5 31.01
2.0 33.43
2.5 36.75
3.0 40.72
3.5 45.17

4.0 50.00

We can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first
hour and then gradually increases back up to 50 mph during the next 3 hours. If we want to verify
that the minimum occurs at 7 AM (or t = 1), we can use calculus. Since extrema occur where the

derivative is 0, we set the derivative equal to zero and solve for t:

sage: solve(diff (£(t),t)==0,t)
[
t == 1

]

Therefore the minimum does occur when t = 1 (at 7 AM) and from the table we see that the

minimum average speed at this time is 30 mph.

4.3.2 Minimum Cost

Example 4.3.2. Imagine there is an island locate at (0, 1500) and a mainline electronic connection
point at (5000,0 where the unit is in meter. What would be the cheapest way to connect the island
and mainland if the cost to lay cable underwater is 36 and on land is 24? We can lay cable under-
water from (1500,0) to (x,0) and then lay cable on land from (x,0) to (5000,0). The variable x
can vary between 0 and 5000. What value of x would minimize the cost for laying this cable and

what would that minimum cost be?

475

476

477

478

479

480

481

482

483

484

485

486
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Solution:

1400
1200
1000}
800}
600}
400}
200}

PN TR S T S TN ST ST AN T T T A SN S )
1000 2000 3000 4000 5000

First, we need to determine the cost. There are two parts: the underwater part and the overland

part. The cost of underwater part called c1 is $36 times the distance d1 from (0, 1500) to (x,0):

sage: var(’x,cl’) 487
(x, c1) 488
sage: c1(x)=36%sqrt(1500°2+x~2) 489

The overland cost called c2 is $24 times the distance d2 from (x,0) to (5000,0):

sage: var(’x,c2’) 490
(x, c2) 491
sage: c2(x)=24%(5000-x) 492

The total cost is:

sage: var(’x,cost’) 493
(x, cost) 494
sage: cost(x) = cl(x)+c2(x) 495
sage: cost(x) 496
-24xx + 36*xsqrt(x~2 + 2250000) + 120000 497

We need to minimize this cost function. First, we graph it to see if it has a minimum:
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sage: g=plot(cost(x),x,0,5000,ymin=150000, ymax=220000, figsize 498

220000
210000
200000 F
190000F
180000
170000
160000
150000+

| | | | | |

0 10002000300040005000

Notice that this cost function has its minimum somewhere between 1000 and 2000. Also, we
will note that as x gets close to that minimum the tangent lines of cost(x) are getting close to
horizontal. In other words, the minimum will occur at a point x for which the derivative is zero or
horizontal. This is a calculus problem that we can solve.

Also notice that in this particular problem, solve command will not evaluate the solution. We have

to use find_root to numerically approximate the solution:

sage: var(’c’) 499
c 500
sage: c=find_root(diff (cost(x)) ,0,10000) 501
sage: ¢ 502
1341.6407865 503
sage: n(cost(c)) 504
160249.223594996 505

The minimum occurs at x = 1341.64 meters and minimum cost is approximately $160,250
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4.3.3 Packaging (Minimum Surface Area)

Example 4.3.3. The cost of packaging in business is related to the surface area of the package.
Minimizing the surface area will minimize the cost. Assuming that a Sumsung has a refrigerator
product that needs to be packaged in a rectangular box having a square base. If the volume of
the box is required to be 2 cubic meter, then find the dimensions of the box that will minimize its
surface area.

Solution:

Let sides of the square base is x and the height of the box is y, then the volume of the box is given

by x*y and must equal 2 cubic meters.

sage: var(’x,y,S?) 506
(x, vy, 9) 507
sage: constraint=x"2x%y== 508

The surface area of the box is S = 4xy +2x? and is the quantity that must be minimized, where the
area of top and bottom sides are x> and the 4 sides each have area xy. Using our volume constraint,

x?y = 2, we can solve for y in terms of x:

2

v=
sage: sol=solve(constraint,y) 509
sage: sol 510
I 511
2/x72 512

= <
Il
Il

513

The surface area function can then be expressed as a function of x only:

S(x) = dxy +2x% = 4x(2/x?) +2x% = 8/x +2x>
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sage: S(x)=(4*xx*y+2*x"2) .substitute (y==so0l [0].rhs()) 514
sage: S(x) 515
2xx"2 + 8/x 516

Again, we use the idea that extrema occur at points where the derivative is zero, we have:

sage: solve(diff (S(x),x)==0,x) 517
[ 518
x == 1/2xI*sqrt(3)*2~(1/3) - 1/2x2~(1/3), 519
x == -1/2%I*sqrt(3)*2~(1/3) - 1/2x2-(1/3), 520
x == 2°(1/3) 521
] 522

This equation has 1 real and 2 imaginary solutions. We need only the real solution of x =2!/3. We

compare with the plot to see the actual minimum:
sage: g=plot(S(x),x,0,10,ymin=0,ymax=100,figsize=3) 523

100§
8ot
60 |

40 ¢

20{

Alternatively, we could have used the second derivative test to show that a minimum occurs at

x =21/3:

sage: (diff(S(x),x,2)).substitute(x==2"(1/3)) 524

12 525

Since f”(2'/3) > 0, we know that the graph is concave up at x = 2!/3 and hence must have a
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minimum there. Since y = 21/3 when x =21/ 3 we conclude that the box with minimum surface

area is a 2 cube meters with sides of 2!/3 meters.

4.3.4 Maximize Revenue

Example 4.3.4. Suppose a travel agency charges 500 per person for a charter flight if exactly 80
people sign up. However, if more than 80 people sign up, then the fare is reduced by 2 per person
for each additional person over the initial 80. The travel agency wants to know how many people
they should book to maximize revenue. Also, determine what that maximum revenue is and what
the corresponding fare is for each person.

Solution:

Let x denotes the number of passenger above 80 and the revenue is the product of the number of
people multiplied by the cost (fare) per person. If R(x) is defined as the revenue function, then
R(x) = (80 + x)(500 —2x). We want to determine the maximum value of R(x) for x > 0. Let

consider the graph:

sage: var(’x,R7?)
(x, R)
sage: R(x)=(80+x)*(500-2%*x)

sage: g=plot(R(x),x,0,200,ymin=40000, ymax=60000,figsize=3)

60000

T

55000
50000

45000

40000

I

L PR [T SRS S N T S S S |
0 50 100 150 200

From the plot above, we see that a maximum occurs at about 80 to 90. To confirm this, we first

526

527

528

529
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solve for the critical points:

sage: solve(diff (R(x),x)==0,x)
[

x == 85

]

Therefore the maximum does indeed occur at x = 85, and the maximum revenue is:

sage: R(85)

54450

or $54450. Since 80+ x represents the number of customers, this occurs when 165 customers sign

up for the flights. In this case, the cost per person is:

sage: (500-2*x).substitute (x==85)
330
or $330 per person.

4.4 Newton’s Method

4.4.1 Programing Newton’s Method

Newton’s Method is a technique for calculating zeros of a function based on the direction of its
tangent lines (hence, it requires first derivative). It is a recursive routine. tedious to do by hand and
easily to make mistake. However, it is simple to handle with Sage. We need initial guess value
to start with or in other word, we need to guess where to solution’s location is. This is because an
initial approximation x for that zero, say at x =, is needed to start the recursion. For example, we
can specify xg by examining the graph of the function to see where the zeros are approximately.

Then the next approximation x; can be found by the recursive formula x; = xg — f(xo)/f’(x0).

530

531

532

533

534

535

536

537
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This process can be iterated using the general formula:

f(xn)
' (xn)

Xn+1 =Xn —

Under suitable conditions, the sequence of approximation {xg, X1, X2, ..., } (called Newton sequence)
will converge to r. However the Newton Method does not guarantee the convergent, if the initial
guess is not good (or not close enough to the zero) then it will diverges, meaning we will not able

to find the solution.

Example 4.4.1. Approximate the zeros of the function f(x) = In(6 —x?) —x.

Solution:

sage: var(’x,f’)
(x, £)
sage: f(x)=log(6-x"2)-x

sage: g=plot(f(x),x,0,4,ymin=-5,ymax=5,figsize=3)

Clearly, there is one zero between 1 and 1.5 based on the graph above. To approximate this zero,

we define a function newtn to perform the recursion:

sage: var(’x,newtn’)

(x, newtn)

538

539

540

541

542

543
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sage: newtn(x)=x-f(x)/(diff (f(x))) 544

To generate the corresponding Newton sequence, we compute 8 iterates of this function starting
with an initial guess of x = 1.5.
sage : xzero=float(15/10)
sage: foriin range(8):
Xzero=newtn(xzero)

print xzero
1.4009754666568441
1.3977834736657635
1.3977805354266575
1.3977805354241768
1.397780535424177
1.3977805354241768
1.397780535424177
1.3977805354241768

Hence, if we stop at 6 decimal spaces then the zero of f(x) = In(6—x?) —x is 1.397780.

4.4.2 Divergence

As mention earlier, Newton’s Method does not alway work. For instance, the function y = x!/3

clearly has a root at x = 0:

sage: g=plot(x~(1/3),x,0,1,figsize=3,ymin=0, ymax=1) 545
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| I0.2I | IO.4I | IO.6I | IO.8I - 1

Yet, Newton’s Method fails for any guess x # 0:
sage: f(x) = x1/3
sage : newtn(x)=x-f(x)/(diff(f(x)))
sage : xzero=float(5/10)
sage: foriinrange(8):
Xzero=newtn(xzero)

print xzero
—1.0

2.0
—4.0
8.0
—16.0
32.0
—64.0
128.0

4.4.3 Slow Convergence

Even when Newton’s Method works, sometimes the Newton sequence converges very slowly to

the zero. Consider the following function:
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sage: var(’x,f?) 546
(x, £) 547
sage: f(x)=x"3-2%x-2 548
sage: g=plot(f(x),x,-3,3,ymin=-20,ymax=5,figsize=3) 549

Clearly, there is a root between 1.5 and 2. If we use the newtn function with out guess at x =1,
we get quick convergence to root:
sage: f(x) =x3—2%xx—2
sage : newtn(x)=x-f(x)/(diff(f(x)))
sage: xzero=float(1)
sage: foriin range(8):
Xzero=newtn(xzero)

print xzero
4.0

2.8260869565217392
2.1467190137392356
1.8423262771400926
1.772847636439238

1.7693013974364495
1.7692923542973595
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1.7692923542386314

But if we choose our initial guess near 0.7, the convergence is much slower. (It took 20 iterations

to have the accuracy as the 8th iteration above).



Chapter 5

Integration

5.1 Antiderivatives (Indefinite Integral)

Integral(f(x),x) give the indefinite integral (or antiderivative) of f with respect to x. The com-
mand integral can evaluate all rational functions and a host of transcendental functions, including
exponential, logarithmic, trigonometric, and inverse trigonometric functions.

To integrate a function f(x,y) respects to x:

’ integral(f(x,y),x) ‘

To integrate a f(x) over [a, b]:

’ integral(f(x,y),x,a,b) ‘

Example 5.1.1. Bvaluate [(x* —3x+2)dx

Solution:

sage: integral (x"3-3*x+2,x)

1/4xx~4 - 3/2%xx"2 + 2%x

93
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Example 5.1.2. Bvaluate [x(x* +2)?dx

Solution:
sage: integral (x*(x~3+2)"2,x) 552
1/8%x~8 + 4/5*%x"5 + 2*x"2 553

Example 5.1.3. Evaluate [ -2 dx

Vx+1
Solution:
sage: integral (2*x/(sqrt(x+1)) ,x).simplify_full () 554
4/3*xsqrt(x + 1) *x(x - 2) 555

Example 5.1.4. Evaluate [2x?sin(x®)dx

Solution:
sage: integral (2*x~2*xsin(x~3),x) 556
-2/3*%cos (x~3) 557

Note: Sage can certainly integrate much more complicated functions, including those that may
require using any of the integration techniques discussed in your calculus textbook. We will con-
sider some of these in Section 5.4. Also note that Sage does not explicitly include the constant of

integration C in its answer. We should always assume that this is implicitly part of the answer.

5.2 Riemann Sums and the Definite Integral

Review of Riemann Sums: A partition of a closed interval [a,b] is a set P = {x¢,X{,...,Xn} Of
points of [a, b] such that

Aa=%x0 <X <X <..<Xp=Db
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Given a function f on a closed interval [a, b] and a partition P ={x¢, X1, ..., X} of the interval [a, b],

recall that Riemann sum of f over [a, b] relative to P is a sum of the form

n

Z f(x{)Ax,

i=1

where Ax; = x; —xi_ and X" is an arbitrary point in the ith subinterval [x;_;,x;]. We assume that
Ax; = Ax % for all i. A Riemann sum is therefore an approximation to the area of the region
between the graph of f and the x-axis along the interval [a,b]. The exact area is given by the
definite integral of f over [a,b], which is defined to be the limit of its Riemann sums an n — oo

and is denoted by fz f(x)dx:

b n
J f(x)dXZTllng)lo;f(xi)Ax.
1=

a

This definite integral exists provided the limits exists. For a continuous function f, it can be shown

that IE f(x)dx exists.

5.2.1 Riemann Sum Using Left Endpoints

A Rieman sum of a function f relative to a partition P can be obtained by considering rectangles
whose heights are based on the left endpoint of each subinterval of P. This is done by setting
x{ =xi=aj+(b—a)/nfori=1,..,n—1, so that the corresponding height of each rectangle is

given by f(x;). Let leftrs denotes the formula for a Riemann sum using left endpoint, we have:

sage: a,b,nn,f,x,i,leftrs,xstar=var(’a,b,nn,f,x,i,leftrs,xstar
)

sage: f(x)=x

sage: d=(b-a)/nn

sage: xstar(i)=a+(i-1)x*d

sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

558

559

560

561

562
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where f(x) is a function of x, nn is number of subinterval. (Since in Sage, n is a special function
so we avoid to use the same letter by indicate the number of subinterval by nn). Notice that as

i=1, xstar = a implies the height is f(a) which correspond the left endpoint of the first rectangle.

Example 5.2.1. Let f(x) = x?4+1on[0,2) andletP=0,1/n,2/n,...,(n—1)/nbea partition of
[0,2]

(a) Approximate fé f(x)dx by computing the Riemann sum relative to P using the left endpoint
method.

(b) Plot the graph of f and the rectangles corresponding to the Riemann sum in part (a).

(c) Find the limit of the Riemann sum obtained in part (a) by letting n — oo

Solution:

(a)

sage: a,b,nn,f,x,i,leftrs,xstar,d=var(’a,b,nn,f,x,i,leftrs,
xstar ,d’)
sage: d=(b-a)/nn

sage: f(x)=x"2+1

sage: xstar(i)=a+(i-1)x*d

sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

sage: table([(i,n(leftrs(0,2,i),digits=4)) for i in range
(10,110,10)], header_row=[’n’,’Riemann_ Sum’], frame=True)

oo N S +

| n | Riemann Sum |

t=====t=============+

| 10 | 4.280

Fomm o Fomm e +

| 20 | 4.470

Fomm o Fom e +

| 30 | 4.535

563

564

565

566

567

568

569

570

571

572

573

574

575

576
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+ - T +
| 40 | 4.568 |
+ - - + - — - +
| 50 | 4.587
R +-————_———— +
| 60 | 4.600
B +-——_———_———_———— +
| 70 | 4.610
+ - T T T T eI +
| 80 | 4.617 |
+ - - F e - - +
| 90 | 4.622
+ - - —————— +

Thus fg(xz +1)dx ~ 4.627 for n = 100 (rectangles).
(b) Following plot represents a plot of the rectangles corresponding to the Riemann sum in part (a)

using left endpoint and n =4

0.5 1 1.5 2

(c) Evaluate leftrs in the limit as n — oo

577

578

579

580

581

582

583

584
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587

588

589

590

591
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sage: a,b,nn,f,x,i,leftrs,xstar,d=var(’a,b,nn,f,x,i,leftrs, 592

xstar ,d’)

sage: d=(b-a)/nn 593
sage: f(x)=x"2+1 594
sage: xstar(i)=a+(i-1)=*d 595
sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn) 596
sage: limit(leftrs(0,2,nn) ,nn=infinity) 597
14/3 598

Thus, [ (x>+1)dx = 14/3

5.2.2 Riemann Sum Using Right Endpoints

We can similarly define a Riemann sum of f relative to a partition P by considering rectangles
whose height are based on the right endpoint of each subinterval P. Let rightrs denotes the

formula for a Rieman sum using right endpoint, we have:

sage: a,b,nn,f,x,i,rightrs,xstar=var(’a,b,nn,f,x,i,rightrs, 599
xstar’)

sage: f(x)=x 600

sage: d=(b-a)/nn 601

sage: xstar(i)=a+ix*d 602

sage: rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn) 603

Notice that as i = 1, xstar = a+ d implies the height is f(a+ d) which corresponds the right

endpoint of the first rectangle.

Example 5.2.2. Redo example 5.2.1 with right endpoint method.

Solution:

(a)
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sage: a,b,nn,f,x,i,leftrs,xstar,d=var(’a,b,nn,f,x,i,leftrs,
xstar ,d’)

sage: d=(b-a)/nn

sage: f(x)=x"2+1

sage: d=(b-a)/nn

sage: xstar(i)=a+ix*d

sage: rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

sage: table([(i,n(rightrs(0,2,i),digits=4)) for i in range

(10,110,10)], header_row=[’n’,’Riemann_ Sum’],frame=True)

tommo o S S +
n | Riemann Sum |

t=====+=============+

| 10 | 5.080 |

Fomm oo S +

| 20 | 4.870 |

tommo o S +

| 30 | 4.801

tommo o S +

| 40 | 4.768

Fommo o S +

| 50 | 4.747

Fomm oo S +

| 60 | 4.734 |

tomooo P +

| 70 | 4.724

tomm o S +

99

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628
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b +
| 4.711 |
S S +
| 4.707

S S +

Thus fg(xz +1)dx ~ 4.707 for n = 100 (rectangles).

(b) The following is a plot of the rectangles corresponding to the Riemann sum in part (a) using

the right endpoint n =

0.5 1 1.5 2

(c) Evaluate rightrs in the limit as n — oo

sage:

a,b,nn,f,x,i,leftrs,xstar ,d=var(’a,b,nn,f,x,i,leftrs,

xstar ,d’)

sage:
sage:
sage:
sage:
sage:

14/3

d=(b-a)/nn

f(x)=x"2+1

xstar (i)=a+ix*d
rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

limit(rightrs(0,2,nn) ,nn=infinity)

629

630

631

632

633

634

635

636

637

638

639

640
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5.2.3 Riemann Sum Using Midpoints

For midpoint method, the ith subinterval is given by x{ =x; = a+(i+1/2)(b—a)/n. Let midrs

denotes the formula for a Riemann sum using midpoint, we have:

sage: a,b,nn,f,x,i=var(’a,b,nn,f,x,i’) 641
sage: f(x)=x 642
sage: d=(b-a)/nn 643
sage: xstar(i)=a+(i-1/2)x*d 644
sage: midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn) 645

notice that as i =1, xstar = a+ (i— 1/2)d implies the height is between f(a) (left endpoint) and

f(a+ d) (right endpoint).

Example 5.2.3. Redo the example 5.2.1 with midpoint method.

Solution:

(a)

sage: a,b,nn,f,x,i,leftrs,xstar,d=var(’a,b,nn,f,x,i,leftrs, 646

xstar ,d’)

sage: d=(b-a)/nn 647
sage: f(x)=x"2+1 648
sage: xstar(i)=a+(i-1/2)*d 649
sage: midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn) 650
sage: table([(i,n(midrs(0,2,i),digits=4)) for i in range 651
(10,110,10)], header_row=[’n’,’Riemann,Sum’], frame=True)
oo S + 652
| n | Riemann Sum | 653

===t === ======+4 654



| 10 | 4.660

R +--——_——_———_——— +
| 20 | 4.665

+ - - - - - +
| 30 | 4.666 |
+ - === + - - = +
| 40 | 4.666 |
+ - + - +
| 60 | 4.666

B +-————_——————— +
| 60 | 4.667

+ - - —— - +
| 70 | 4.667 I
B o - +
| 80 | 4.667 |
R + - — - +
| 90 | 4.667

R +-_——_——_——_———— - +

Thus, fé (x% +1)dx ~ 4.666 for n = 30 (rectangles).
(b) The graph
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/
/

0.5

(c) Evaluate midrs in the limit as n — oo

sage:

a,b,nn,f,x,i,leftrs,xstar ,d=var(’a,b,nn,f,x,i,leftrs,

xstar ,d’)

sage:
sage:
sage:
sage:
sage:
sage:

14/3

5.3 The Fundamental Theorem of Calculus

d=(b-a)/nn
f(x)=x"2+1

d=(b-a)/nn

xstar(i)=a+(i-1/2)*d

midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

limit (midrs (0,2,nn) ,nn=infinity)

103

The most important and elegant achievement in calculus is the Fundamental Theorem of Calcu-

lus (FTC), which demonstrate that integration and anti-differentiation are equivalent. It expressed

in two part:

Part I: Let f(x) is continuous on [a, b], we have:
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where F(x) is any antiderivative of f(x).
Part II:

If F(x) = Jf(t)dt , then F/(x) = f(x)

5
Example 5.3.1. Evaluate [ —2—dx
1

Va1
Solution:
sage: integral ((2*x)/(sqrt(4*x-1)),x,1,2) 683
5/6xsqrt (7) - 1/2*sqrt(3) 684

2
Example 5.3.2. Evaluate [ Y32 =2dx

V3
Solution:
sage: integral ((sqrt(x~2-3))/(2%x) ,x,sqrt(3) ,2) 685
-1/12%sqrt (3) *pi + 1/2 686

1
Example 5.3.3. Approximate [ cotx?>dx
0

Solution:

Here is an example of an integral that Sage cannot evaluate exactly but return unevaluated integral.

sage: integral(tan(x~2),x,0,1) 687

integrate(tan(x~2), x, 0, 1) 688
However, a numerical approximation is still possible by using n() command:

sage: n(integral(tan(x~2),x,0,1)) 689

0.398414444597 690



5.3. THE FUNDAMENTAL THEOREM OF CALCULUS 105

Example 5.3.4. Use the fact that if m < f(x) < M Vx € [a,b], then m(b—a) < [ f(x)dx <

Q—ac

2
M (b — a) to approximate [+v/2x3+ 1dx.
0
Solution:
We see that the function f(x) = v/2x3 +1 is increasing on [0,2]. We can simply find f’(x) and

observe that f/(x) > 0 for all x.

sage: g=plot(sqrt(2*x~3+1) ,x,0,2,figsize=3) 691

Thus, 1 =f(0) < f(x) < f(2) = /17 and therefore:

2

1(2-0) < J\/2x3+1dx <V17(2-0)
0

2

2<J'\/2x3—|—1dx<2\/17
0
Let Sage confirms this:
sage: integral(sqrt (2*xx~3+1) ,x,0,2) 692
integrate(sqrt (2*x~3 + 1), x, 0, 2) 693

Since Sage dit not exactly evaluate it, we use the numerical approximation command n()

sage: n(integral (sqrt(2*x~3+1) ,x,0,2)) 694
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4.03659298666

Example 5.3.5. Let f(x) = sin(x?) on [0,2] and define F(x) = [ f(t)dt = [} sin(t?)dt.
(a) Plot the graph of f.

(b) Find the value’s of x for which F(x) starts to decrease.

Solution:

(a) Let plot the graph of f.

sage: var(’f,t,g’)
(f, t, g)
sage: f(x)= sin(x~2)

sage: g=plot(f(x),x,0,2,figsize=3)

0.5F

N F

0.5 1 1.5

-0.5}

(b) We can see that the graph of f is above the x-axis (positive area) for x between 0 and 7t/2, and

below the x-axis for x between 7t/2 to 2. Thus, F begins to decrease at x = 71/2.

5.4 Integration Techniques

In the text book, you will learn different technique to evaluate an integral. In Sage, we do not
need to specify the technique. Sage will automatically chooses an appropriate technique for the
problem. However, if the integrals which will not be able to evaluated in term of elementary, Sage

will return the integral unevaluated.

695
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699
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Below, you will see some examples of integral that involves trigonometric functions, exponential,
and logarithmic functions. If you wish to solve them by hand, some of them will require integration

by part, partial fraction decompositions, or trigonometric substitutions.

3

Example 5.4.1. Evaluate | mdx

Solution:

If do it by hand, this integral involves using the substitution method.. Let u = x* +2, hence

du = 4x3dx:
x> Ifdu 1[ _, 1wt 1! 1 1
——dx=-|—S=-|u‘du=- =— - =
(x*+2)2 4)ur 4 4(=2+1) 4-1 4u  4(*+2)
And by Sage command:
sage: integral (x~3/(x"4+2)"2) 700
—1/4/(XA4 + 2) 701

Example 5.4.2. Evaluate | %dx
Solution:
This integral requires long division and partial fraction decomposition to be solved by hand. Apply

long division, we have:

20 +xF+x+1 3 3x+2 3 3x 2
o =2x +2x+1—|—x2_1:2x +2x+1+x2_1+xz_1
Hence:
2%+ x> +x+1 3 3x 2 3
J 21 dXZJ 2x —i—2x—|—1—|—x2_1 +x2—1 dx=J(2x +2X+1)dX+deX+JX2—IdX
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r

(2x3 4+ 2x+1)dx = %x4+x2+x

J% = élog(xz—l) = %log(x—l)+%log(x+1)

I 3x
dx —
x 2

3

Jx2—1 2
F 2 2 | | | |

dx=|—2  ax=||— —— |ax= dx— | ——dx = log(x—1)—1 1

=1 J(x—l)(x+l) x ”x—l x+1} x Jx—l x Jx+1 x=loglx—1)—log(x+1]

Therefore

2x% + %2 +x+1 I 3 3
JX X’z‘_lx dx:(§x4+x2+x>+[Elog(x—1)+§109(x+1)]+[109(X_1)_109(X+1)]

1 5 1
= —x4+x2+x+Elog(x—l)%—ilog(x%—l)

2
And by Sage command:
sage: integral ((2*x~5+x"2+x+1)/(x~2-1)) 702
1/2*xx~4 + x~2 + x + 1/2xlog(x + 1) + 5/2xlog(x - 1) 703

x4 423 43x+1
Example 5.4.3. Evaluate f—(x2 T dx
Solution:
This integral involves long division, partial fraction decomposition, and inverse trigonometric fuc-

ntions.Apply long division, we have:

x4+2x3—|—3x—|—1_ +2x3—2x2—i—3x_ n 2x3 4+ 2x B 2x2 n X
(x2+1)2 X*+2x2+1 xF 22+ (x241)2 0 (x2+1)2
Hence:
x4+ 233 +3x+1 2x3 4 2x 2x2 X
2 r—dx=|(1+7H 21 (<2 7 T2 5 | dx
(x*+1) x*+2x2+1  (x*4+1)2 (x> +1)

For the first term of the right hand side:

Jldx=x (1)

For the second term of the right hand side, let u = X 2x2+ 1= du= (43 +4x)dx =4(x> +
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x)dx. Therefore:

2x3 +2x 2(du 1 1 ) ’ 2
J<X4+2X2+1)d" 4J o2 og(u) 5 og(x“+1) og(x“+1) 2

For the third term, let x = tan0 = x2+ 1 = tan?0 + 1 = sec? 0 and dx = sec20d0. Hence:

2x? tan 0 ’ tan 0 .9
[ (i) =2 g seetoas =2 sgao =2 noao

:_2J‘1—COSZG
2

do = —G—I—%sinZG

5t

af

Va? +1
3:‘ X

2f

r theta
1k

So:

X 1
VxZ+1vx2+1

2x? 1
X dx = —0+ —sin20 = —arctanx +sin0 cos ® = —arctanx +
(x2+1)2 2

= —arctanx +

x2+1

3)

For the fourth term, let v =x?+1 = dv = 2xdx. So:

X Ifdv 1( _, 1 1
_— = — | —=— = — = 4
J(X2+1)2dx ZJVZ 2JV dv @)
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From (1), (2), (3), and (4):

JX4+2X3+3X+1dx—x+lo (x2+1)—arctanx+ — !
(x241)2 N g x24+1  2(x2+1)
2x—1
=x+1 241) —arct —_
x+log(x“+1) —arc anx+2(xz+l)
Or by Sage command:
sage: integral ((x~4+2*xx~3+3*xx+1)/(x~2+1) "~2) 704
x + 1/2%(2%x - 1)/(x~2 + 1) - arctan(x) + log(x~2 + 1) 705

Example 5.4.4. Evaluate [2x*cos(x)dx

Solution:

This integral requires integration by part technique. Let u =x? = du =2xdx and dv = cos(x)dx =
v =sin(x). Hence

Jszcos(x)dX =2 (xzsin(x) — J sin(x)2xdx)

We again apply the integral by part method on [2xsin(x)dx. Let u; =x = du; = dx and dv; =

sin(x)dx = v; = —cos(x). Therefore

J2x2cos(x)dx =2 (xzsin(x) —Jsin(x)Zxdx) =2 {xzsin(x) -2 (—xcos(x) —|—Jcos(x)dx)}

= 2x?sin(x) +4xcos(x) —4sin(x) = 4xcos(x) + 2sin(x) (x> —2)

And by Sage command:
sage: integral (2*xx~2*xcos(x)) 706
4xxxcos (x) + 2x(x~2 - 2)*sin(x) 707

Example 5.4.5. Evaluate | \/1_—747dx

Solution:
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This integral involves trigonometric substitution.Let x = sin® = dx = cos©0d0. Hence

—4 dx cos0do
dx = _4J = —4J = —4Jd6 = —40 = —4arcsinx
J\/l—x2 vV1—x2 Vcos20

By Sage command:

sage: integral (-4/(sqrt(1-x-2))) 708

-4xarcsin(x) 709

Following are some examples of integrals that are important in applications but do not have an el-
ementary antiderivative. The integral does not have closed-form expression ,i.e., the antiderivative
can not be expressed in term of elementary functions (such as polynomial, logarithm, exponential,
trig functions). For instance, this integral contain an error function erf- a special non-elementary

function:

sage: integral(sin(x~2)) 710
1/16*xsqrt(pi) *((I + 1)*sqrt(2)*erf ((1/2*%I + 1/2)*sqrt(2)*x) + 711
(I - 1)*sqrt(2)*erf ((1/2%I - 1/2)*sqrt(2)*x) - (I - 1)x*sqrt

(2)*xerf (sqrt (-I)*x) + (I + 1)x*sqrt(2)*erf ((-1)"(1/4)x*x))
Notice how Sage returns the answer in terms of imagination numbers.

sage: integral(e~(-x"2)) 712

1/2*sqrt(pi)*erf (x) 713
Where erf is an error function. It plays an important role in physics and engineering.

sage: integral (sin(x)/x) 714

-1/2*%I*Ei(I*x) + 1/2%I*Ei(-Ix*x) 715
However, we can use n() to evaluate these integrals over any finite interval. For example:

sage: n(integral(e~(-x~2),x,0,10)) 716
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0.886226925452758 717

sage: n(integral (log(x)/x,x,2,50)) 718

7.41173549054043 719



Chapter 6

Applications of the Integral

6.1 Area Between Curves

First, let us consider the problem of finding the area between two curves.

Example 6.1.1. Determine the area of the region bounded between the curves f(x) = %sin(x) and

g(x) = csc?(x) on [rr/4,7/2]
Solution:

We first plot graphs of f and g.

sage: f(x)= 1/2%xsin(x) 720
sage: g(x)=csc(x)"2 721
sage: h=plot ((f(x),g(x)),x,pi/4,3*xpi/4,figsize=3,fi11=True) 722
2
1.5}

08 1 12141618 2 2

2

113
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Recall that csc(x) is greater than 1 in this interval. Hence, csc?(x) is greater than sin(x) since

—1 < sin(x) < 1. Therefore, to calculate the area between f(x) and g(x) on this interval is:

sage: integral(g(x)-f(x),x,pi/4,3*xpi/4) 723

-1/2xsqrt (2) + 2 724

Example 6.1.2. Determine the area of the region enclosed between the curves f(x) = 2x (x> —4x +

2) and g(x) = x?

Solution:
sage: f(x)=2*xx*x(x"2-4%x+2) 725
sage: g(x)=x"2 726
sage: h=plot ((f(x),g(x)),x,-2,6,figsize=3,ymin=-10, ymax=20) 727

20

15

The bounded region between the two curves seems to be at 0, 1/2 and 4. To make sure this, we

solve for the intersection points:

sage: solve(f(x)==g(x),x) 728
L 729
x == 4, 730
x == (1/2), 731

732

"
Il
I

o
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] 733

Hence, the intersection points are at x =0, 1/2,4. Notice that f(x) is greater than g(x) on [0, 1/2]

and g(x) is greater than f(x) on [1/2,4]. Therefore the area enclosed between those curves is:

sage: integral (f(x)-g(x),x,0,1/2) + integral(g(x)-f(x),x 734
,1/2,4)

517/16 735

Example 6.1.3. Determine the area of the region bounded between the curves f(x) = [2x| and

g(x) = sin(x) on [—7/2,71/2]

Solution:
First we plot the graph:
sage: f(x)= abs (2*x) 736
sage: g(x)=cos(x) 737
sage: h=plot ((f(x),g(x)),x,-pi/2,pi/2,figsize=3,fill=True) 738

3F

2.5}

2F

1.5F

S

-1.5 -1 -0.5 0.5 1 15

From the graph, we will need to consider three separate areas. Note that the command solve does
not work here because it is only able to solve algebraic equations. Instead, we use the find_root
command to solve the equation f(x)— g(x) = 0, providing the interval where the root could be

found.

sage: find_root (f(x)-g(x),0,1) 739
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0.450183611295 740

Thus the approximately root is a = 0.45018. By symmetry, we have another root at a = —0.45018.

Therefore, the area between these two functions is the sum of three integrals:

sage: a=float (45/100) 741
sage: n(integral (f(x)-g(x),x,-pi/2,a)+integral (g(x)-f(x),x,-a, 742
a)+integral (f(x)-g(x),x,a,pi/2))

3.39973326876714 743

The area of the bounded region is 3.3997.

6.2 Average Value

Recall that the average value of a function f(x) on [a, b] is defined as:

b
1
fave — Jf(X)dX
b—a
a

Also, remember that The Mean Value Theorem for Integrals state that for any continuous functions

on [a, b] there exists a value ¢ € [a, b] such that:
f(c) = fave

Example 6.2.1. Let f(x) = 3sin(x) —x

(a) Find the only positive root « of f.

(b) Calculate the average value of f on [0, o].

(c) Determine a value c that satisfies the Mean Value Theorem for Integral on [0, .
Solution:

(a) Draw the graph:
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sage: f(x)=3*sin(x)-x

sage: h=plot(f(x),x,-3,3,figsize=3)

Then use find_root command with the interval [2,3] as our initial guess:

sage: find_root (f(x),2,3)

2.27886266008

Therefore o = 2.27886 accurate to 5 decimal places.

(b) We calculate the average value of f on [0, «]:

sage: alpha=float (227886*(10~(-5)))
sage: fave=1/(alpha-0)*integral (f(x),x,0,alpha)
sage: fave

1.033188037358966

Thus, the average value is approximately e = 1.033188.

(c) By Mean Value Theorem of Integrals, there exists a value ¢ € [0, «] such that f(c) = fgye. We

can solve for ¢ by this equation:

sage: var(’c,x’)
(c, x)
sage: find_root (f(c)-fave,0,1)

0.559759684314

744
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6.3 Volume of Solids of Revolution

Recall the definition to evaluate the integral:

n

b
Jf(x)dx = ngrfoo[; f(x}) Axi]

Other important application of the definite integral involves finding the volume of a solid of revo-

lution, that is, a solid obtained by revolving a region in the plane about one of the x or y axes.

6.3.1 The Methods of Discs

Suppose we have y = f(x), y = 0, and two vertical lines x = a and x = b. Let S be a solid of
revolution obtained by revolving the region bounded by y about the x-axis. To obtain the volume
of S, we can approximate S by discs, that is, the cylinder obtained by revolving each rectangle,
constructed by a Riemann sum of f relative to a partition P = (xq,x1,X2,...,xn ) of [a,b], about the

x-axis. Let the radius of the cylinder be R, the height is h, then the volume is:
V =nR*h

it means that the volume of the ith cylinder which corresponding to the ith rectangle is V; =

i[f(x )]2Ax. So, an approximation to the volume of S is given by the Riemann sum:

n n

Vol(S)~ Y Vi=m) [f(x})*Ax
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Notice that if the region is revolved about the y-axis then the volume of S is:
d
Vol(s) = nj[f(y)]zdy
C
Example 6.3.1. Find the volume of the solid of revolution obtained by rotating the region bounded

by the graph of f(x) = v/x+ 1, the x-axis, and the vertical line x = 2

Solution:

sage: var(’u’)

sage: f(u)=sqrt(u+l)

sage: h=plot(f(u),u,0,2,figsize=3,fill=True)

0.5F

The plot show our region shaded in gray. Now, we rotate this shaded region about the x-axis to
obtain a solid of revolution. In Sage, we use the revolution_plot3d(f(x),x,a,b) command which

generates a surface if revolution with radius f at height x

sage: s=revolution_plot3d(f(u),(u,0,2), show_curve=True,

opacity=7, parallel_axis=’x’ ).show(aspect_ratio=(1,1,1))

756

757

758

759

760
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sage: pix*integral(f(u)~2,u,0,3) 761

15/2%pi 762

6.3.2 The Method of Washers

If a solid of revolution S is generated by revolving a region bounded between two different curves
f(x) and g(x) on [a,b] about the x-axis, we use washer method. The corresponding volume of S

is given by:
b
Vol(s) = lg(x) - f(x)Pdx
given that g(x) > f(x).

Example 6.3.2. Find the volume of the solid generated by revolving about the x-axis the region
enclosed by y =2x>+1andy = x+2.

Solution:

sage: var(’u’) 763
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u 764
sage: f(u)=2%xu~2+1 765
sage: g(u)=u+2 766

sage: h=plot ((f(u),g(uw)),u,-2,2,figsize=3, ymin=0,ymax=5,fill= 767

True)

We need the intersection points:

sage: solve(f(u)==g(u),u) 768
i 769
u == 1, 770
u == (-1/2) 771
] 772

We can easily verify that the intersection points are (—1/2,3/2) and (1,3). If we let S be the solid
obtains by rotating the region between f(x) and g(x) on [—1/2,1] about the x-axis, then it can be
view as the difference of the solid F obtains by rotating f(x) and the solid G obtains by rotating

g(x) on that same interval:

sage: var(’u,F’) 773
(u, F) 774

sage: f(u)=2%u-2+1 775
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sage: F=revolution_plot3d(f(u),(u,-1/2,1),
)

opacity=7,

CHAPTER 6. APPLICATIONS OF THE INTEGRAL

parallel_axis=’x’

sage: var(’u,G’)

(u, G)

sage: g(u)=(u+2)

sage: G=revolution_plot3d(f(u),(u,-1/2,1),

opacity=7,

parallel_axis=’x’

)

show_curve=True,

show_curve=True,

776
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779

780



6.3. VOLUME OF SOLIDS OF REVOLUTION 123

sage: S=G+F 781
sage: S.show() 782
None 783

Since the curve f(x) is lower than g(x), the volume of S is given by:

sage: pixintegral((g(u)~2-f(u)~2),u,-1/2,1) 784
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81/20%*pi 785

6.3.3 The Method of Cylindrical Shells

Another approach to finding the volume of a solid of revolution is to approximate it using cylindri-
cal shells. Recall that with dish method or washers method, we rotate the function on an interval
around an axis. In cylindrical shells method, we rotate the rectangular of area whose height is

paralell to the axis of rotation.

A cylindrical shell is defined as a solid generated by two cylinders having the same axis of rotation.
Suppose a cylindrical shell has an inner redius r; and outer radius of 1, with altitude h, then the

volume is defined as:

Vol=nr3h—mri h=2n7hAx

where T = %: the average of radius and Ax =1, — 1
Assume we have a function f(x) defined on x = a and x =b. Let S is the solid obtain by ro-
tate the region between f(x), x-axis, a and b about y-axis. Then the volume of ith shell is the

corresponding ith rectangle and defined as:
Vol; =2 mtxi f(x{) Ax
where x{ = (x; —xi_1)/2. Therefore:
n n
Vol(S)~ Y Voli=2m Y xjf(xj)Ax
i=1 i=1

As n — oo, we obtain the exact volume of S:
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Similarly, if the region is rotated about the x-axis then the volume of S is given by:

d
Vol(S) :271Jy f(y) dy

Example 6.3.3. Consider the region bounded by the curve y = x> + 1, the x-axis, and the line
x = 3. Find the volume of the solid generated by revolving this region about the y-axis using the
method of cylindrical shells.

Solution:

sage: var(’u,f’)
(u, £)
sage: f(u)=u~2+1

sage: h=plot(f(u),u,0,3,figsize=3,fill=True)

We then revolve this shaded region about the y-axis to obtain the solid S. Let Q be the cylinder
when we rotate x = 3 and P the paraboloid of rotating f(x) about y-axis, then S can be seen as Q

with P removed from it:

sage: var(’u,P’)
(u, P)

sage: f(u)=u~2+1

786
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sage: P=revolution_plot3d(f(u),(u,0,3), show_curve=True, 793

opacity=7)

sage: var(’u,Q,f’) 794
(u, Q, £) 795
sage: Q=revolution_plot3d((3,f),(f,0,10), show_curve=True, 796

opacity=7 )




6.3. VOLUME OF SOLIDS OF REVOLUTION 127

sage: S=P+Q 797

The volume of S is given by:

sage: f(u)=u~2+1 798
sage: 2*pi * integral (uxf(u),u,0,3) 799
99/2%pi 800

Note: The volume in this example can be found by washer method:

flu)=u?+1eu=/fu)—1

u=0="f(u)=1, u=3=f(u)=10

where the volume is the sum of rotating the region between x = 3 and x = y/y — 1 and the region

between x = 3 and x = 0.

sage: var(’y’) 801
y 802

sage: pi*integral ((9-(y-1)),y,1,10)+pi*xintegral(9,y,0,1) 803
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99/2*pi 804

Those answers agree to each other as they suppose to be.

Example 6.3.4. Sketch the ellipse z—i + bl; = 1 and find the volume of the solid obtained by revolv-

ing the region enclosed by the ellipse about the x-axis.

Solution:

sage: x,y=var(’x,y’) 805
sage: a=1 806
sage: b=2 807

sage: h=implicit_plot(x~2/a~2+y~2/b~2==1,(x,-a-1,a+1),(y,-b-1, 808

b+1) ,figsize=3)

of
1 E
of :
2k E

To plot the corresponding solid of revolution ellipsoid, we first solve the equation z—i + blz =1 for

Y
sage: var(’a,b’) 809
(a, b) 810
sage: sol=solve(x~2/a"~2+y~2/b"2==1,y) 811
sage: sol 812

[ 813
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y == -sqrt(a~2 - x"2)x*b/a, 814
y == sqrt(a~2 - x~2)*b/a 815
] 816

The positive and negative of y above correspond for the upper haft and lower haft of the ellipse.

Let consider the upper haft in plotting and computing the volume of the ellipse. Define:

b2x2 2
f(x):\/bta—;‘:b\/l—%

sage: f(x)=sol[1].rhs () 817
sage: f(x) 818
sqrt(a~2 - x~2)%*b/a 819
sage: f(x)=f(x).substitute(a=1,b=2) 820
sage: S=revolution_plot3d(f(x),(x,-1,1), show_curve=True, 821

opacity=7, parallel_axis=’x’ )

Since the ellipsoid is defined on the interval [—a, a], its volume S based on the disc method is:

sage: pixintegral(f(x)~2,x,-1,1) 822
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16/3*pi 823

In general, the volume of the ellipsoid for arbitrary positive a and b is:

sage: var(’a,b,x,y’) 824
(a, b, x, y) 825
sage: F(x)=sol[1].rhs () 826
sage: pix*integral(F(x)~2,x,-a,a) 827
4/3*xpixa*xb~2 828
Thus,

Volzgﬂab2

Notice that if a = b, then the ellipsoid becomes a sphere and the volume will be Vol = %7’((13

where a is the radius of the sphere.
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Appendix A

APPENDIX A. COMMON MATHEMATICAL OPERATIONS

Common Mathematical Operations

Operation
Define a function
Evaluate a function
Square root
Absolution value
Limit
Derivative
Second derivative

Indefinite integral

Exact definite integral

Approximate integral
Pi
Euler number
Imaginary number
Infinity
Cosine function

Inverse cosine function

Exponential function

Natural logarithm (base e)

Traditional Notation

1
00

COsX

arccosx or cos 1x

eX

Inx

Sage Notation
f(x) =xA2
f(1)
sqrt(f(x))
abs(f(x))
limit(f(x),x = a)
diff(f(x),x)
diff(f(x),x,2)
integral(f(x),x)
integral(f(x),x,a,b)
n(integral(f(x),x,a,b),digits =2)
pi
e
i
infinity
cos(x)
arccos(x)
exp(x) or e/\2

log(x)



Appendix B

Useful Commands for Plotting and Algebra

Description Sage Command
Plot a function f(x) over interval [a, b] plot(f(x),x,a,b)
Plot contour of f(x,y) on [a, b]xl[c, d] contour_plot(f(x,y), (x,a,b),(y,c,d))
Plot an ellipse has center at (x,yo) with radii r{,m, ellipse((x0,y0),71,72)
Solve equation f(x) = g(x) for x solve(f(x)==g(x))
Reduce expression to most simple (expression).simplify.full()
Numerical approximation of a quantity n(expression) expression
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