Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, Summer 2012 Final Examination

Time: 14:00–17:00, on Tuesday, 7 August, 2012. Brought to you by Стефан Біланюк. **Instructions:** Do parts \heartsuit , \diamondsuit , and \clubsuit , and, if you wish, part \clubsuit . Show all your work and justify all your answers. If in doubt about something, ask!

Aids: Calculator; up to two (≤ 2) aid sheets; at most one (≤ 1) brain.

Part \heartsuit . Do all four (4) of **1**–**4**.

1. Compute $\frac{dy}{dx}$ as best you can in any three (3) of **a**-**f**. [15 = 3 × 5 each]

a.
$$y = \tan(2x)$$
 b. $e^x e^y = 1$ **c.** $y = e^x \cos(x)$

d.
$$y = \frac{x^2 + 9}{x + 2}$$
 e. $\begin{array}{c} y = t + 1 \\ x = \sec(t) \end{array}$ **f.** $y = \int_1^x e^{z + 1} dz$

2. Evaluate any three (3) of the integrals \mathbf{a} -f. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int \frac{1}{x^3 + 4x} dx$$

b. $\int_e^\infty \frac{1}{x \ln(x)} dx$
c. $\int \cos(2t+1) dt$
d. $\int_0^{\pi/2} \sin^2(z) \cos^3(z) dz$
e. $\int e^x \sec(e^x) dx$
f. $\int_0^1 \arctan(x) dx$

3. Do any three (3) of **a**-**f**. $[15 = 3 \times 5 \text{ each}]$

- **a.** Use the Right-hand Rule to compute the definite integral $\int_{0}^{2} (x+1) dx$.
- **b.** Compute $\lim_{n \to \infty} n \sin(n\pi)$.
- c. Sketch the region between r = 0 and $r = \sec(\theta)$, for $0 \le \theta \le \pi/4$, in polar coordinates and find its area.
- **d.** Find the area of the surface obtained by revolving the curve y = x, for $0 \le x \le 1$, about the *y*-axis.

e. Use the limit definition of the derivative to compute f'(2) if $f(x) = x^2 + 1$.

f. Determine whether the series $\sum_{n=0}^{\infty} \frac{n}{e^{2n}}$ converges or diverges.

4. Consider the curve
$$y = \frac{x^2}{2}$$
 $0 \le x \le 2$.

- **a.** Sketch this curve. [1]
- **b.** Sketch the surface obtained by revolving this curve about the x-axis. [1]
- **c.** Compute either i. the length of the curve or ii. (Not both!) [8]

Part \diamondsuit . Do any two (2) of 5–7. [30 = 2 × 15 each]

- 5. Sketch the solid obtained by revolving the region below $y = \sqrt{25 x^2}$ and above y = 0, for $4 \le x \le 5$, about the *y*-axis and find its volume. [15]
- 6. Find the domain, all the intercepts, maximum, minimum, and inflection points, and all the vertical and horizontal asymptotes of $f(x) = xe^x$, and sketch its graph. [15]
- 7. Freyja and Hretha sprint 100 m in lanes that are 5 m apart. The two start simultaneously at t = 0 s. Freyja runs at 9.6 m/s and Hretha at 10 m/s.
 - **a.** How far ahead is Hretha when she crosses the finish line? When does Freyja cross the finish line? [1]
 - **b.** Determine how quickly Hretha is pulling ahead as she crosses the finish line. [1]
 - c. Determine how the distance [along a direct line] between the two is changing at the instant that Hretha crosses the finish line. [8]
 - **d.** The two runners' starting positions and their positions at any instant thereafter form a trapezoid. How is the area of this trapezoid changing at the instant that Hretha crosses the finish line? [5]

Part 4. Do one (1) of 8 or 9. $[15 = 1 \times 15 \text{ each}]$

8. Consider the power series
$$\sum_{n=0}^{\infty} \frac{n+1}{2^{n+1}} x^n$$
.

- **a.** Find the radius of convergence of this power series. [10]
- **b.** What function has this power series as its Taylor series at 0? [5]
- 9. Let $f(x) = x \sin(3x)$.
 - **a.** Find the Taylor series at 0 of f(x). [10]
 - **b.** Determine the radius of convergence of this Taylor series. [5]

|Total = 100|

Part . Bonus problems! Do them (or not), if you feel like it.

- **0**. Sketch the graph of $r = 1 e^{-\theta}$ [polar coordinates!] for $\theta \ge 0$, and explain why it has the shape it does. [2]
- -1. Write an original poem touching on calculus or mathematics in general. [2]

I THE COURSE WAS FUN, AT LEAST A LITTLE. ENJOY THE REST OF THE SUMMER!