Auadratic Epsilonics Practice

1: $m (-x^2-6x+5) = -5$ verify this using the E-8 definition

The each E>0, there is m > 0,

such that if |x-0| < 8 then $|(-x^2+6x-5)-(-5)| < 8$

iff $|-x^{2}+6x| < \xi$ iff $|x(6-x)| < \xi$ iff $|x| \cdot |6-x| < \xi$ iff $|x-0| \le \frac{\xi}{|6-x|}$ $|6-x| \leftarrow \cos^{4} + \cos^{4} +$

If $|x-0| < \delta < \frac{1}{4}$, then $|x| < \delta < \frac{1}{4}$, so

5.75 < 6-x < 6.25 so 16-x1

 $\frac{1}{6.75}$ $\frac{1}{16-x1}$ $\frac{1}{6.25}$ so

 $\frac{E}{16-x1}$ > $\frac{E}{6.25}$ = $\frac{16-25}{50}$ if $\frac{62.25}{50}$, whatever is smaller than $\frac{E}{6.25}$ is also smaller than $\frac{E}{16-x1}$ is also smaller than $\frac{E}{16-x1}$

so if 1x-0148 we have 1x-0144 and 1x-0148 L E 6.25 16-x1

therefore, 1(-x2+6x-5)-(-5)/2 & so the limit is correct.

(2) $\lim_{x\to 2} (2x^2-3x+5) = 7$ verify!

For each $\varepsilon>0$, there is a $\delta>0$ s.t. if $fx-216\delta$, then $1(2x^2-3x+5)-716\varepsilon$

50 if 12-01-84/10

we have 1.9 < 2 - 2 < 2.1 > thus 2.4 < x + /2 < 2.6

so if 1x-2148, it is also $4\frac{\epsilon}{2k+121}$ and thus 2k+121

1(2x2-3x+5)-7/6

and so the limit works

$$\frac{1}{3 + \frac{1}{2}}$$

$$\frac{1}{3 + \frac{1}{2}}$$

$$\frac{1}{2 + \frac{1}{2}}$$

$$\frac{1}$$

 $\frac{3|_{im}}{\theta \to 0} \sin(x) = 0$

