Mathematics 1101Y – Calculus I: Functions and calculus of one variable TRENT UNIVERSITY, 2013–2014

Assignment #5

Epsilonics

Due on Monday, 3 March, 2014.

One of the things we've skipped over was the formal definition of limit, that is, how to pin down just what $\lim_{x\to a} f(x) = L$ really means. The usual definition of limits is something like:

 $\varepsilon - \delta$ DEFINITION OF LIMITS. $\lim_{x \to a} f(x) = L$ exactly when for every $\varepsilon > 0$ there is a $\delta > 0$ such that for any x with $|x - a| < \delta$ we are guaranteed to have $|f(x) - L| < \varepsilon$ as well.

Informally, this means that no matter how close – that's the ε – you want f(x) to get to L, you can make it happen by ensuring that x is close enough – that's the δ – to a. If this can always be done, $\lim_{x \to a} f(x) = L$; if not, then $\lim_{x \to a} f(x) \neq L$.

 $x \to a$ This definition works, but most people find it a little hard to understand and use at first. Here is less common definition equivalent to the one above that is cast in terms of a game:

LIMIT GAME DEFINITION OF LIMITS. The *limit game* for f(x) at x = a with target L is a three-move game played between two players A and B as follows:

1. A moves first, picking a small number $\varepsilon > 0$.

2. B moves second, picking another small number $\delta > 0$.

3. A moves third, picking an x that is within δ of a, *i.e.* $a - \delta < x < a + \delta$.

To determine the winner, we evaluate f(x). If it is within ε of the target L, *i.e.* $L - \varepsilon < f(x) < L + \varepsilon$, then player B wins; if not, then player A wins.

With this idea in hand, $\lim_{x\to a} f(x) = L$ means that player *B* has a winning strategy in the limit game for f(x) at x = a with target *L*; that is, if *B* plays it right, *B* will win no matter what *A* tries to do. (Within the rules ...:-) Conversely, $\lim_{x\to a} f(x) \neq L$ means that player *A* is the one with a winning strategy in the limit game for f(x) at x = a with target *L*.

Your task in this assignment, should you choose to accept it, is to find such winning strategies:

- 1. Describe a winning strategy for B in the limit game for f(x) = 2x 1 at x = 2 with target 3. Note that no matter what number εA plays first, B must have a way to find a δ to play that will make it impossible for A to play an x that wins for A on the third move. [3]
- 2. Describe a winning strategy for A in the limit game for f(x) = 2x 3 at x = 2 with target 2. Note that A must pick an ε on the first move so that no matter what δB tries to play on the second move, A can still find an x to play on move three that wins for A. [3]
- **3.** Use either definition of limits above to verify that $\lim_{x\to 1} (x^2 + 2) = 3$. [4]
 - *Hint:* The choice of δ in **3** will probably require some slightly indirect reasoning. Pick some arbitrary smallish positive number, say 1, for δ as a first cut. If it doesn't do the job, but x is at least that close, you'll have some more information to help pin down the δ you really need.

NOTE: The problems above are probably easiest done by hand, though Maple has tools for solving inequalities which could be useful.