
Mathematics 1101Y – Calculus I: Functions and calculus of one variable
Trent University, 2012–2013

Solutions to Assignment #1
Plotting with Maple†

Before attempting the questions below, please read through Chapter 1, for the basics
of graphing various functions in Cartesian coordinates, and through §11.1 and §11.3 of
Chapter 11, for the basics of parametric curves and polar coordinates, respectively. (The
basic definitions of how parametric curves and polar coordinates work are embedded in
this assignment for your convenience, but you might want some additional explanations
and examples.) You should also read the handout A very quick start with Maple and play
around with Maple a little. It might also be useful to skim though Getting started with
Maple 10 by Gilberto E. Urroz – read those parts concerned with plotting curves more
closely! – and perhaps keep it handy as a reference. You can find links to both documents
on the MATH 1101Y web page. Maple’s help facility may also come in handy, especially
when trying to make out the intricacies of what the plot command and its options and
variations do. Finally, make use of the Maple labs!

A curve is easy to graph, at least in principle, if it can be described by a function of
x in Cartesian coordinates.

1. Use Maple to plot the curves defined by y = 1 − 2x2, y = 1, y =
√

1− x2, and
y =

√
|x|, respectively, for −1 ≤ x ≤ 1 in each case. [Please submit a printout of your

worksheet(s).] [2]

Solution. Suitable instances of the plot command and their output are given below.
[The graphs have been reduced in size to save some space.] To enable the use of the
implicitplot and polarplot commands in later questions, your instructor began his
worksheet by loading the plots package.

> with(plots):

> plot(1-2*x^2,x=-1..1)

† You may well feel that Maple is plotting against you . . .
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> plot(1,x=-1..1)

> plot(sqrt(1-x^2),x=-1..1)

> plot(sqrt(abs(x)),x=-1..1)

�
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In many cases, a curve is difficult to break up into pieces that are defined by functions
of x (or of y) and so is defined implicitly by an equation relating x and y; that is, the curve
consists of all points (x, y) such that x and y satisfy the equation.

2. Use Maple to plot the curves implicitly defined by x = y2, for −1 ≤ y ≤ 1, x2 +y2 = 1

for y ≥ 0,
(
x2 + y2

)3
= 4x2y2, and |x|+ |y| = 1, respectively, the latter two for all x

and y satisfying each equation. [Please submit a printout of your worksheet(s).] [2]

Solution. Suitable instances of the implicitplot command and their output are given
below. [The graphs have been reduced in size to save some space.] Recall that your
instructor began his worksheet by loading the plots package to enable the use of the
implicitplot. Note the use of the gridrefine=2 option to get smoother curves.

> implicitplot(x=y^2,y=-1..1,gridrefine=2)

> implicitplot(x^2+y^2=1,x=-1..1,y=0..1,gridrefine=2)
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> implicitplot((x^2+y^2)^3=4*x^2*y^2,x=-1..1,y=0..1,gridrefine=2)

> implicitplot(abs(x)+abs(y)=1,x=-1..1,y=0..1,gridrefine=2)

�

Another way to describe or define a curve in two dimensions is by way of parametric
equations, x = f(t) and y = g(t), where the x and y coordinates of points on the curve are
simultaneously specified by plugging a third variable, called the parameter (in this case t),
into functions f(t) and g(t). This approach can come in handy for situations where it is
impossible to describe all of a curve as the graph of a function of x (or of y) and arises
pretty naturally in various physics problems. (Think of specifying, say, the position (x, y)
of a moving particle at time t.)

3. Use Maple to plot the parametric curves given by x = cos(t) and y = sin(t) for
0 ≤ t ≤ π, x = sin(t) and y = cos(2t), and x = 2 sin(t) cos2(t) and y = 2 sin2(t) cos(t),
respectively, these two curves for 0 ≤ t ≤ 2π. [Please submit a printout of your
worksheet(s).] [1.5]
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Solution. Suitable instances of the plot command and their output are given below.
[The graphs have been reduced in size to save some space.]

> plot([cos(t),sin(t),t=0..Pi])

> plot([sin(t),cos(2*t),t=0..2*Pi])

> plot([2*sin(t)*(cos(t))^2,2*(sin(t))^2*cos(t),t=0..2*Pi])

�
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Polar coordinates are an alternative to the usual two-dimensional Cartesian coordi-
nate. The idea is to locate a point by its distance r from the origin and its direction, which
is given by the (counterclockwise) angle θ between the positive x-axis and the line from
the origin to the point. Thus, if (r, θ) are the polar coordinates of some point, then its
Cartesian coordinates are given by x = r cos(θ) and y = r sin(θ). (Note that for purposes
of calculus it is usually more convenient to measure angles in radians rather than degrees.)
Polar coordinates come in particularly handy when dealing with curves that wind around
the origin, since such curves can often be conveniently represented by an equation of the
form r = f(θ) for some functon θ. If r is negative for a given θ, we interpret that as a
distance of |r| in the opposite direction, i.e. the direction π + θ.

4. Use Maple to plot the curves in polar coordinates given by r = 1 for 0 ≤ θ ≤ π,
r = sin(2θ), and r = csc(θ), respectively, these two curves for 0 ≤ θ ≤ 2π. [Please
submit a printout of your worksheet(s).] [1.5]

Solution. Suitable instances of the polarplot command and their output are given
below. [The graphs have been reduced in size to save some space.] Recall that your
instructor began his worksheet by loading the plots package to enable the use of the
polarplot. One could also get these curves by using the coords=polar option in the
plot command; an example if this is given for the second curve.

> polarplot(1,theta=0..Pi)

> polarplot(sin(2*theta),theta=0..2*Pi)
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> plot(sin(2*z),z=0..2*Pi,coords=polar)

> polarplot(csc(theta),theta=0..2*Pi)

Note the rather large distance scale in the last plot. The line in question is not actually
the x-axis, though it is awfully close on the scale in the plot. �

5. Some of the curves in problems 1–4 are actually the same curve. (With different
presentations . . . ) Which ones are the same? [2]

Solution. Interpreting “the same” as “exactly the same set of points in the Euclidean
plane,” the following curves are the same:

• y = 1− 2x2, for −1 ≤ x ≤ 1, from 1, and
x = sin(t) and y = cos(2t), for 0 ≤ t ≤ 2π, from 3.

• y =
√

1− x2, for −1 ≤ x ≤ 1, from 1, and
x2 + y2 = 1, for y ≥ 0, from 2, and
x = cos(t) and y = sin(t), for 0 ≤ t ≤ π, from 3, and
r = 1, for 0 ≤ θ ≤ π, from 4.
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• x2 + y2 = 1 for y ≥ 0 [−1 < x < 1 and −1 < y < 1 for all of it], from 2, and
x = 2 sin(t) cos2(t) and y = 2 sin2(t) cos(t), for 0 ≤ t ≤ 2π, from 3, and
r = sin(2θ), for 0 ≤ θ ≤ 2π, from 4.

There are various others that are similar in shape or, indeed, overlap (e.g. y =
√
|x|

from 1 and x = y2 from 2), but they are not exactly the same. �

6. Find a representation of the form r = f(θ) in polar coordinates for the curve whose
equation in Cartesian coordinates is y = 1− 2x2, as best you can. [That is, you need
to figure out what the function f(θ) ought to be.] [1]

Solution. We plug the relations x = r cos(theta) and y = r sin(θ) into y = 1 − 2x2 and
try to solve for r:

y = 1− 2x2 =⇒ r sin(θ) = 1− 2 [r cos(θ)]
2

= 1− 2r2 cos2(θ)

=⇒ 2 cos2(θ)r2 + sin(θ)r − 1 = 0

At this point we have a quadratic equation in r, some of whose coefficients are functions
of θ. Applying the quadratic equation gives:

r =
− sin(θ)±

√
sin2(θ)− 4 · 2 cos2(θ) · (−1)

2 · 2 cos2(θ)
=
− sin(θ)±

√
[1− cos2(θ)] + 8 cos2(θ)

4 cos2(θ)

=
− sin(θ)±

√
1 + 7 cos2(θ)

4 cos2(θ)
= −1

4
tan(θ) sec(θ)± 1

4
sec2(θ)

√
1 + 7 cos2(θ)

Note that the last two forms of the answer are completely equivalent and that neither is
really essentially simpler than the other. The multiplicity of trig functions and identities
means that there are a lot of ways one could rewrite the answer. The gung-ho can also try
to figure out for which θ the expression in the answer actually makes sense. �
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