Mathematics 110 - Calculus of one variable

Trent University 2002-2003
Solution to Assignment \#7

1. Suppose r and R are constants such that $0<r<R$. Find the surface area of the torus obtained by rotating the circle $(x-R)^{2}+y^{2}=r^{2}$ about the y-axis. [10]

Solution. One of the quickest way to solve this is to parametrize the original circle, $(x-R)^{2}+y^{2}=r^{2}$. (Note that R and r are constants ...) This circle can be described parametrically as follows: $x=R+r \cos (t)$ and $y=r \sin (t)$, where $0 \leq t \leq 2 \pi$. To check that this works, try plugging these expressions for x and y into the original equation of the circle.

The area of the surface obtained by rotating a curve C about the y-axis is given by $\int_{C} 2 \pi x d s$, where $d s$ is an infinitesimal piece of arc-length of the curve. In the case of a curve given by parametric equations $x=x(t)$ and $y=y(t)$ for $\alpha \leq t \leq \beta$, this integral boils down to (see $\S 10.3$ in the text):

$$
\int_{\alpha}^{\beta} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

In our case, $x=R+r \cos (t)$, so $\frac{d x}{d t}=0-r \sin (t)$, and $y=r \sin (t)$, so $\frac{d y}{d t}=r \cos (t)$.
It follows that the surface area we want can be computed as follows:

$$
\begin{aligned}
\int_{0}^{2 \pi} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t & =\int_{0}^{2 \pi} 2 \pi(R+r \cos (t)) \sqrt{(-r \sin (t))^{2}+(r \cos (t))^{2}} d t \\
& =\int_{0}^{2 \pi} 2 \pi(R+r \cos (t)) \sqrt{r^{2}\left(\sin ^{2}(t)+\cos ^{2}(t)\right)} d t \\
& =\int_{0}^{2 \pi} 2 \pi(R+r \cos (t)) \sqrt{r^{2}} d t \\
& =\int_{0}^{2 \pi} 2 \pi r(R+r \cos (t)) d t=\left.2 \pi r(R t-r \sin (t))\right|_{0} ^{2 \pi} \\
& =2 \pi r(R \cdot 2 \pi-r \sin (2 \pi))-2 \pi r(R \cdot 0-r \sin (0)) \\
& =2 \pi r(2 \pi R-r \cdot 0)-2 \pi r(0-r \cdot 0) \\
& =2 \pi r(2 \pi R)=4 \pi^{2} R r
\end{aligned}
$$

