

Figure 1: The Sierpinski triangle

Math 110 -Assignment \#9

Due: Wednesday March 26th

- Justify your answers. Show all steps in your computations.
- Please indicate your final answer by putting a box around it.
- Please write neatly and legibly. Illegible answers will not be graded.
- Section A: When finished, please place your assignment under Stefan's door.

Section B: When finished, please place your assignment in slot marked Math 110 in the big white box outside the Math Department Office in Lady Eaton College.

1. The Sierpinski Triangle is constructed as follows (see Figure 1)

Step 0: Begin with an equilateral triangle Δ_{0},
Step 1: Remove an upside-down triangle from the middle of Δ_{0}, leaving a region Δ_{1} which looks like three smaller triangles (each half the side-length of Δ_{0}).
Step 2: Remove an upside-down triangle from each of these smaller triangles, leaving a region Δ_{2}, which is a union of nine triangles (each one quarter the side-length of Δ_{0}.

If we iterate this process an infinite number of times, the remaining set, Δ_{∞}, is the Sierpinski triangle.
Let A_{n} be the area of Δ_{n}. Assume for simplicity that $A_{0}=1$.
(a) Show that $A_{1}=\frac{3}{4}$. (Hint: Show that the central triangle which we remove has an area of $\frac{1}{4}$)
Solution: Let T_{0} be the central triangle. Observe that Δ_{0} is made of four copies of T_{0}. Thus, $1=\operatorname{area}\left(\Delta_{0}\right)=4 \cdot \operatorname{area}\left(T_{0}\right)$, so $\operatorname{area}\left(T_{0}\right)=\frac{1}{4}$.
(b) Show that $A_{n+1}=\frac{3}{4} A_{n}$ for all $n>1$. Conclude that $A_{n}=\left(\frac{3}{4}\right)^{n}$ for all $n \in \mathbb{N}$.

Solution: Δ_{n} consists of 3^{n} tiny triangular components, each of which looks like Δ_{0}. To obtain Δ_{n+1}, we replace each of these triangles with a tiny copy of Δ_{1}. Thus, by (a), we reduce the area of each triangular component by a factor of $\frac{3}{4}$. Since we do this to every component, we also reduce the area of Δ_{n} by a factor of $\frac{3}{4}$.
Suppose (by induction) that $A_{n-1}=\left(\frac{3}{4}\right)^{n-1}$. Then $A_{n}=\frac{3}{4} A_{n-1}=\frac{3}{4} \cdot\left(\frac{3}{4}\right)^{n-1}=\left(\frac{3}{4}\right)^{n}$.

Figure 2: The Continent of Koch
(c) Compute A_{∞}, the area of Δ_{∞}.

Solution: $A_{\infty}=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(\frac{3}{4}\right)^{n}=0$.
2. The Continent of Koch is constructed as follows (see Figure 2):

Step 0: Begin with four equal line segments, each of length 1 , arranged as Λ_{0}.
Step 1: Replace each of these line segments with a $\frac{1}{3}$-scale copy of Λ_{0}, to obtain Λ_{1}.
Observe that Λ_{1} consists of 16 line segments, each of length $\frac{1}{3}$.
Step 2: Replace each of these 16 line segments with a $\frac{1}{9}$-scale copy of Λ_{0}, to obtain Λ_{2}.
Observe that Λ_{2} consists of 64 line segments, each of length $\frac{1}{9}$.
Iterate this process an infinite number of times. The curve you obtain is Λ_{∞}, the coastline of the Continent.
(a) Let P_{n} be the length of Λ_{n}. Thus, $P_{0}=4$, because Λ_{0} consists of four line segments of length 1. Show that $P_{1}=\frac{16}{3}$.
Solution: Λ_{1} consists of 16 line segments, each of length $\frac{1}{3}$, for a total length of $16 \cdot \frac{1}{3}=\frac{16}{3}$.
(b) Show that $P_{n+1}=\frac{4}{3} P_{n}$ for all $n>1$. Conclude that $P_{n}=4\left(\frac{4}{3}\right)^{n}$ for all $n \in \mathbb{N}$.

Solution: Λ_{n} consists of 4^{n+1} tiny line segments. To obtain Λ_{n+1}, we replace every line segment in Λ_{n} with four smaller line segments, each one third as long. Thus, we effectively increase the length of each line segment by a factor of $\frac{4}{3}$. This means we increase the total length of Λ_{n} by a factor of $\frac{4}{3}$.
Assume inductively that $P_{n-1}=\left(\frac{4}{3}\right)^{n-1}$. Then $P_{n}=\frac{4}{3} P_{n-1}=\frac{4}{3} \cdot 4\left(\frac{4}{3}\right)^{n-1}=4\left(\frac{4}{3}\right)^{n}$.
(c) Let P_{∞} be the length of Λ_{∞}; compute P_{∞}, the length of the coastline of Koch.

Solution: $P_{\infty}=\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty}\left(\frac{4}{3}\right)^{n}=\infty$.
(d) Let A_{n} be the area under the curve Λ_{n} (ie. the shaded region in Figure 2). Assume $A_{0}=\frac{\sqrt{3}}{4}$. Show that $A_{1}=A_{0}+\frac{4}{9} A_{0}$.
Solution: We obtain Λ_{1} by adding to Λ_{0} four smaller copies of itself, each one third in size. Thus, each of these four copies has an area of $\frac{1}{9} A_{0}$, so the total area of Λ_{1} is $A_{0}+\frac{4}{9} A_{0}$.
(e) Show that $A_{n}=A_{n-1}+\left(\frac{4}{9}\right)^{n} A_{0}$. Conclude that $A_{n}=A_{0} \cdot \sum_{i=0}^{n}\left(\frac{4}{9}\right)^{i}$.

Solution: Λ_{n-1} consists of 4^{n} line segments, each of length $\frac{1}{3^{n-1}}$. We obtain Λ_{n+1} by attaching a tiny copy of Λ_{0} to each of these. Each tiny copy is $\frac{1}{3^{n}}$ times the size of Λ_{0}, so its area is $\frac{1}{9^{n}} A_{0}$. We are attaching a total of 4^{n} copies, for a total additional area of $4\left(\frac{4}{9}\right)^{n} A_{0}$. Thus, $A_{n}=A_{n-1}+4\left(\frac{4}{9}\right)^{n} A_{0}$.
Assume inductively that $A_{n-1}=\sum_{i=0}^{n-1}\left(\frac{4}{9}\right)^{i}$. Then $A_{n}=A_{n-1}+\left(\frac{4}{9}\right)^{n} A_{0}=\sum_{i=0}^{n-1}\left(\frac{4}{9}\right)^{i}+$ $\left(\frac{4}{9}\right)^{n} A_{0}=\sum_{i=0}^{n}\left(\frac{4}{9}\right)^{i}$.
(f) Compute A_{∞}, the area of the Continent of Koch.

Solution: $A_{\infty}=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} A_{0} \sum_{i=0}^{n}\left(\frac{4}{9}\right)^{i}=A_{0} \sum_{i=0}^{\infty}\left(\frac{4}{9}\right)^{i}=A_{0} \cdot \frac{1}{1-\frac{4}{9}}=$ $A_{0} \cdot \frac{1}{5 / 9}=A_{0} \cdot \frac{9}{5}=\frac{9}{5} \cdot \frac{\sqrt{3}}{4}=\frac{9 \sqrt{3}}{20}$.

