Math 110 -Assignment \#5

Due: Monday December 2

- Justify your answers. Show all steps in your computations.
- Please indicate your final answer by putting a box around it.
- Please write neatly and legibly. Illegible answers will not be graded.
- Math 110A: When finished, please give your assignment to Stefan or leave it under his door.
- Math 110B: When finished, please place your assignment in slot marked Math 110 in the big white box outside the Math Department Office in Lady Eaton College.

If \mathbf{C} is a cone of angle θ and height h, recall from $\mathrm{HW} \# 3$ that the volume of \mathbf{C} is given by $V(h)=\frac{\pi}{3} \tan (\theta)^{2} h^{3}$. Use this information to answer the following questions:

In a winery, there are two tanks, \mathbf{C}_{1} and \mathbf{C}_{2}, in the shape of inverted cones. Tank \mathbf{C}_{1} has angle $\theta_{1}=\frac{\pi}{3}$, and is initially full of wine to a depth of 10 metres. Tank \mathbf{C}_{2} has angle $\theta_{2}=\frac{\pi}{6}$, and is initially empty. Tank \mathbf{C}_{1} drains into \mathbf{C}_{2}. The wine level in \mathbf{C}_{1} drops steadily at a
 constant rate of 1 metre per second until it is empty after 10 seconds.

1. Let $h_{1}(t)$ be the wine level in \mathbf{C}_{1} at time t. Thus $h_{1}(0)=10$ and $h_{1}(10)=0$. Find an expression for $h_{1}(t)$, for $t \in[0,10]$.
Solution: $h_{1}(t)=10-t$.
2. Let $V_{1}(t)$ be the volume of wine in \mathbf{C}_{1} at time t. Find an expression for $V_{1}(t)$, for $t \in[0,10]$.

Solution: $\quad V_{1}(t)=\frac{\pi}{3} \tan \left(\theta_{1}\right)^{2} h_{1}(t)^{3}=\frac{\pi}{3} \tan (\pi / 3)^{2} \cdot(10-t)^{3}=\frac{\pi}{3} \cdot(\sqrt{3})^{2} \cdot(10-t)^{3}=$ $\pi(10-t)^{3}$.
3. Let $f(t)$ be the rate at which wine is flowing out of tank \mathbf{C}_{1} at time t. Find an expression for $f(t)$ for $t \in[0,10]$.
Solution: $\quad V_{1}(t)=10-\int_{0}^{t} f(t) d t$. Thus, by the Fundamental Theorem of calculus, $f(t)=-V_{1}^{\prime}(t)=$ $3 \pi \cdot(10-t)^{2}$.
4. Let $h_{2}(t)$ be the wine level in \mathbf{C}_{2} at time t. Thus $h_{2}(0)=0$. Find an expression for $h_{2}(t)$, for $t \in[0,10]$.
Solution: The initial volume of wine in \mathbf{C}_{1} is $V=V_{1}(0)=\pi(10)^{3}=1000 \pi$. Thus, at time t, the amount of wine which has left \mathbf{C}_{1}, and entered \mathbf{C}_{2}, is $V_{2}(t)=V-V_{1}(t)=1000 \pi-\pi(10-t)^{3}=$ $\pi \cdot\left(1000-\left(1000-300 t+30 t^{2}-t^{3}\right)\right)=\pi \cdot\left(t^{3}-30 t^{2}+300 t\right)$.

Figure 1: The Devil's staircase.

However, we also know that $V_{2}(t)=\frac{\pi}{3} \tan \left(\theta_{2}\right)^{2} h_{2}(t)^{3}=\frac{\pi}{3} \tan (\pi / 6)^{2} \cdot h_{2}(t)^{3}=\frac{\pi}{3} \cdot\left(\frac{1}{\sqrt{3}}\right)^{2} \cdot h_{2}(t)^{3}=$ $\frac{\pi}{9} \cdot h_{2}(t)^{3}$.
Thus, $h_{2}(t)=\sqrt[3]{\frac{9}{\pi} V_{2}(t)}=\sqrt[3]{\frac{9}{\pi} \pi \cdot\left(t^{3}-30 t^{2}+300 t\right)}=\sqrt[3]{9 t\left(t^{2}-30 t+300\right)}$.

Bonus Problem: Any real number $\alpha \in[0,1]$ has a unique ${ }^{1}$ trinary representation $0 . a_{1} a_{2} a_{3} a_{4} \ldots$ so that $\alpha=\sum_{n=0}^{\infty} \frac{a_{n}}{3^{n}}$. For example, in trinary notation,

$$
\frac{1}{3}=0.1 ; \quad \frac{2}{3}=0.2 ; \quad \frac{1}{9}=0.01 ; \quad \frac{1}{2}=0.1111111 \ldots ;
$$

A Cantor number is a number whose trinary expansion contains only 0's and 2's, and has no 1's. The Devil's staircase (see Figure 1) is the function $f:[0,1] \longrightarrow[0,1]$ so that $f(\alpha)=\beta$, where β is the largest Cantor number less than or equal to α. For example, $f(0.120)=0.020$, $f(0.1000 \ldots)=0.0222 \ldots$, and $f(0.122121000012)=0.022020222202$.

Try to compute the integral $\int_{0}^{1} f(x) d x$, as a limit of right-hand Riemann sums. Now do it using left-hand Riemann sums. Do your answers agree? If not, why not?

[^0]
[^0]: ${ }^{1}$ Well, almost unique. If $\alpha=0 . a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n} 000 \ldots$, then we could also write $\alpha=$ $0 . a_{1} a_{2} a_{3} \ldots a_{n-1} b_{n} 2222 \ldots$, where $b_{n}=a_{n}-1$. This is analogous to the fact that $0.19999 \ldots=0.2$ in decimal notation.

