## Math 110 -Assignment \#3 -Solutions

Due: Monday, October 28th

1. Chain Rule for Piecewise linear functions: Let $h=f \circ g$, where

$$
\begin{aligned}
f(y) & =\left\{\begin{array}{rllll}
2 y+4 & \text { if } & y & y & -1 \\
-2 y & \text { if } & -1 & \leq & < \\
3 y-5 & \text { if } 1 & < & y
\end{array} \quad\right. \text { (Figure A) } \\
\text { and } g(x) & =\left\{\begin{array}{rllll}
3 x & \text { if } & x \leq 0 \\
x / 2 & \text { if } & 0< & x
\end{array}\right.
\end{aligned}
$$

(a) Express $h(x)$ as a piecewise linear function, similar to $f$ and $g$. In other words, find real numbers $X_{1}<X_{2}<X_{3}$, slopes $m_{0}, m_{1}, m_{2}, m_{3}$ and values $b_{0}, b_{1}, b_{2}, b_{3}$ so that

$$
h(x)=\left\{\begin{array}{llll}
m_{0} x+b_{0} & \text { if } & & x \\
m_{1} x+b_{1} & \text { if } & X_{1}<X_{1} \\
m_{2} x+b_{2} & \text { if } & X_{2}<x & \leq X_{2} \\
m_{3} x+b_{3} & \text { if } & X_{3}<x
\end{array} .\right.
$$

Solution: $h(x)=\left\{\begin{array}{rllll}6 x+4 & \text { if } & & x & \leq \frac{-1}{3} \\ -6 x & \text { if } & \frac{-1}{3} & <x & \leq 0 \\ -x & \text { if } & 0 & <x & \leq 2 \\ 3 x / 2-5 & \text { if } & 2 & <x\end{array}\right.$. To see this, observe:

- If $x \leq \frac{-1}{3}$, then $x \leq 0$, so $g(x)=3 x$. Thus, if $y=g(x)$, then $y<3 \cdot \frac{-1}{3}=-1$. Thus, $f(y)=2 y+4=2 \cdot g(x)+4=2 \cdot 3 x+4=6 x+4$.
- If $\frac{-1}{3}<x \leq 0$, then $x \leq 0$, so $g(x)=3 x$. Thus, if $y=g(x)$, then $-1=3 \cdot \frac{-1}{3}<y \leq$ $3 \cdot 0=0$. Thus, $f(y)=-2 y=-2 \cdot g(x)=-2 \cdot 3 x=-6 x$.
- If $0<x \leq 2$, then $0<x$, so $g(x)=\frac{x}{2}$. Thus, if $y=g(x)$, then $0=\frac{0}{2}<y \leq \frac{2}{2}=1$. Thus, $f(y)=-2 y=-2 \cdot g(x)=-2 \frac{x}{2}=-x$.
- If $2<x$, then $0<x$, so $g(x)=\frac{x}{2}$. Thus, if $y=g(x)$, then $1=\frac{2}{2}<y$. Thus, $f(y)=3 y+5=3 \cdot g(x)-5=3 \frac{x}{2}-5$.
(b) Observe that $h$ is differentiable on each of the intervals $\left(-\infty, X_{1}\right), \quad\left(X_{1}, X_{2}\right), \quad\left(X_{2}, X_{3}\right)$, and $\left(X_{3}, \infty\right)$. Verify that the Chain Rule holds on each of these intervals.
Solution: $h$ is differentiable on each of the domains $\left(-\infty, \frac{-1}{3}\right), \quad\left(\frac{-1}{3}, 0\right), \quad(0,2)$, and $(2, \infty)$, because it is linear on each of these domains. To see that the chain rule holds, observe that
- If $x \leq \frac{-1}{3}$, then $h^{\prime}(x)=6$. But if $x \leq \frac{-1}{3}$, then $g^{\prime}(x)=3$. If $y=g(x)$, then $y<-1$, so $f^{\prime}(y)=2$. Thus, $f^{\prime}(y) \cdot g^{\prime}(x)=2 \cdot 3=6=h^{\prime}(x)$.
- If $\frac{-1}{3}<x \leq 0$, then $h^{\prime}(x)=-6$. But if $\frac{-1}{3}<x \leq 0$, then $g^{\prime}(x)=3$, and if $y=g(x)$, then $f^{\prime}(y)=-2$. Thus, $f^{\prime}(y) \cdot g^{\prime}(x)=-2 \cdot 3=-6=h^{\prime}(x)$.
- If $0<x \leq 2$, then $h^{\prime}(x)=-1$. But if $0<x \leq 2$, then $g^{\prime}(x)=\frac{1}{2}$, and if $y=g(x)$, then $f^{\prime}(y)=-2$. Thus, $f^{\prime}(y) \cdot g^{\prime}(x)=-2 \cdot \frac{1}{2}=-1=h^{\prime}(x)$.
- If $2<x$, then $h^{\prime}(x)=\frac{3}{2}$. But if $2<x$, then $g^{\prime}(x)=\frac{1}{2}$, and if $y=g(x)$, then $f^{\prime}(y)=3$. Thus, $f^{\prime}(y) \cdot g^{\prime}(x)=3 \cdot \frac{1}{2}=\frac{3}{2}=h^{\prime}(x)$.

2. If $\mathbf{C}$ is a cone of height $h$ and base radius $r$ (Figure $\mathbf{C}$ ), recall that the volume of $\mathbf{C}$ is $\frac{\pi}{2} r^{2} h$. The angle of repose of a granular material (eg. sand, grain, etc.) is the steepest angle at which the material can be sloped without avalanching. If sand is poured from a high place onto a single spot on the ground, it will form a cone whose angle $\theta$ is the angle of repose.
(a) Suppose $\theta=\frac{\pi}{6}$ is the angle of repose. Compute the radius of a sand cone of height $h$. Now compute the volume.
Solution: Note that $\tan (\theta)=\frac{h}{r}$. Thus, $r=h / \tan (\theta)=h \cdot \cot \left(\frac{\pi}{6}\right)=\sqrt{3} \cdot h$.
Thus, the volume is $v(h)=\frac{\pi}{2} r^{2} h=\frac{\pi}{2}(\sqrt{3} \cdot h)^{2} \cdot h=\frac{3 \pi}{2} h^{3}$.
(b) Suppose sand is being poured onto the cone at a constant rate of $10 \mathrm{~m}^{3} / \mathrm{sec}$. After some time, the sand cone is 5 metres high. At this instant, how fast is the cone's height increasing, in metres per second?
Solution: Let $V(t)$ be the volume of sand in the cone at time $t$. Since sand is being added to the cone at a constant rate of $10 \mathrm{~m}^{3} / \mathrm{sec}$, we know that $V^{\prime}(t)=10$. (In other words, $V$ is a linear function with slope 10.)
Let $h(t)$ be the height of the pile at time $t$. Then we know from part (a) that $V(t)=v(h(t))$, where $v(h)=\frac{3 \pi}{2} h^{3}$. Thus, applying the Chain rule, we have:

$$
\begin{equation*}
V^{\prime}(t)=v^{\prime}(h(t)) \cdot h^{\prime}(t) \tag{1}
\end{equation*}
$$

Since $v(h)=\frac{3 \pi}{2} h^{3}$, it follows that $v^{\prime}(h)=\frac{9 \pi}{2} h^{2}$. Also, we've already established that $V^{\prime}(t)=10$. Substituting these expressions into (1), we obtain:

$$
\begin{equation*}
10=\frac{9 \pi}{2}(h(t))^{2} \cdot h^{\prime}(t) \tag{2}
\end{equation*}
$$

If $t$ is the instant when the cone is 5 metres high, then $h(t)=5$. Substitute into (2) to get:

$$
10=\frac{9 \pi}{2}(5)^{2} \cdot h^{\prime}(t)=\frac{9 \pi}{2} \cdot 25 \cdot h^{\prime}(t)=\frac{225 \pi}{2} \cdot h^{\prime}(t)
$$

and conclude that $h^{\prime}(t)=\frac{20}{225 \pi}=\frac{4}{45 \pi}$.
3. Bonus problem: Prove that $\cos ^{\prime}(x)=-\sin (x)$, using the definition: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Solution: We use the following facts:
(a) $\cos (x+h)=\cos (x) \cos (h)-\sin (x) \sin (h)$.
(b) $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0$.
(c) $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$.
(a) is a standard trigonometric identity; (b) and (c) were established in class.

$$
\begin{aligned}
\cos ^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos (x)}{h} \overline{\overline{\text { by (a) }}} \lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\sin (x) \sin (h)-\cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cos (x) \cos (h)-\cos (x)}{h}-\lim _{h \rightarrow 0} \frac{\sin (x) \sin (h)}{h} \\
& =\cos (x) \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}-\sin (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \overline{\overline{(\mathrm{~b}) \&(\mathrm{c})}} \cos (x) \cdot 0-\sin (x) \cdot 1=-\sin (x)
\end{aligned}
$$

