Mathematics 110 - Calculus of one variable

Trent University 2001-2002
Assignment \#10
Due: Friday, 29 March, 2002

Splitter, Mover, Triangle-Maker

Define a function F as follows:

- The domain and range of F is the collection of all the non-empty subsets of the $x y$-plane.
- If A is a subset of the $x y$-plane, then

$$
F(A)=\left\{\left.\left(\frac{x}{2}, \frac{y}{2}\right) \right\rvert\,(x, y) \in A\right\} \cup\left\{\left.\left(\frac{x+1}{2}, \frac{y}{2}\right) \right\rvert\,(x, y) \in A\right\} \cup\left\{\left.\left(\frac{x}{2}, \frac{y+1}{2}\right) \right\rvert\,(x, y) \in A\right\}
$$

Roughly speaking, what F does is take each point in A and splits it into three points, one halfway to the x-axis, one halfway to the y-axis, and one halfway to the origin from the original point:

[Actually, this description isn't quite correct - it is true of the point $(1,1)$, but no other - but it is true that F splits each point in A into three points, one of which is halfway to the origin from the original point.]

For example, consider what F does with the unit square, $S=\{(x, y) \mid 0 \leq x \leq 1 \& 0 \leq y \leq 1\}$:

1. Sketch $F(F(S)), F(F(F(S))), F(F(F(F(S))))$, and $F(F(F(F(F(S)))))$. (Separately!) [2]

Solution. Here are $S, F(S), \ldots, F(F(F(F(F(S)))))$:

2. Let $P=\{(1,1)\}$. Sketch $P, F(P), F(F(P)), F(F(F(P))), F(F(F(F(P))))$, and $F(F(F(F(F(P)))))$. (Separately!) [2]
Solution. Here are $P, F(P), \ldots, F(F(F(F(F(P)))))$:

3. What shape do you get as the limit of the sequence $A, F(A), F(F(A)), F(F(F(A))), \ldots$, no matter what non-empty subset A of the first quadrant you start with? Give a rough sketch. [3]

Solution. The last picture in the solution of either 1 or 2 will serve for a rough sketch. The shape is one obtained by a process much like that for making the Cantor set: Start with a solid triangle, remove the middle triangle from it, leaving three smaller triangles; remove the middle triangle from each of the remaining triangles; repeat the last until the end of time ... Here are the first four shapes along the way:

4. Where on Trent's web pages is there (a very slightly modified version of) this shape?

Solution. Check out the logo of the Department of Mathematics, e.g. at:
http://www.trentu.ca/mathematics/
It's in the upper left corner of the page ...
5. What kind of object is this shape? What is this particular one called?
[2]
Solution. The shape is a fractal called Sierpinski's Triangle. Roughly speaking, fractals are shapes in which parts of the shape are scaled versions of the whole shape. The snowflake curve of Problem 2 on Assignment $\# 3$ is another example of a fractal.

