
Mathematics 110 – Calculus of one variable
Trent University 2001-2002

Skeletal Solutions to the Quizzes

Quiz #1. Friday, 21 September, 2001. [15 minutes]
1. Sketch the graph of a function f(x) with domain (−1, 2) such that lim

x→2
f(x) = 1 but

lim
x→−1

f(x) does not exist. [4]

2. Use the ε− δ definition of limits to verify that lim
x→π

3 = 3. [6]

Solutions.
1. The graph here does the job:

This is the graph of f(x) = 3
x+1 for −1 < x < 2, which does the job since lim

x→−1−
3
x+1 =∞

and lim
x→2+

3
x+1 = 3

3 = 1. �

2. We need to check that for any ε > 0 there is some δ > 0 such that if |x− π| < δ, then
|3− 3| < ε. Now, given any ε > 0, |3− 3| = 0 < ε, so any δ > 0 does the job �

Quiz #2. Friday, 28 September, 2001. [15 minutes]
Evaluate the following limits, if they exist.

1. lim
x→−1

x+ 1
x2 − 1

[5] 2. lim
x→1

x+ 1
x2 − 1

[5]

Solutions.

1. lim
x→−1

x+ 1
x2 − 1

= lim
x→−1

x+ 1
(x− 1)(x + 1)

= lim
x→−1

1
x− 1

=
1

−1− 1
= −1

2
�

2. lim
x→1

x+1
x2−1 = lim

x→1

x+1
(x−1)(x+1) = lim

x→1

1
x−1 = ±∞ (The ± depends on whether x ap-

proaches 1 from the right or the left.) Hence lim
x→1

x+1
x2−1 does not exist. �

Quiz #3. Friday, 5 October, 2001. [20 minutes]

1. Is g(x) =


x2 − 6x+ 9

x− 3
x 6= 3

0 x = 3
continuous at x = 3? [5]

2. For which values of c does lim
x→∞

13
cx2 + 41

exist? [5]
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Solutions.
1. This boils down to checking whether lim

x→3

x2−6x+9
x−3 = 0 or not.

lim
x→3

x2 − 6x+ 9
x− 3

= lim
x→3

(x− 3)2

x− 3
= lim
x→3

x− 3 = 3− 3 = 0

It follows that f(x) is continuous at x = 3. �

2. First, if c = 0, lim
x→∞

13
cx2 + 41

= lim
x→∞

13
41

=
13
41

. Second, if c 6= 0, then lim
x→∞

cx2 + 41 =

±∞, depending on whether c > 0 or c < 0, but then lim
x→∞

13
cx2 + 41

= 0.

Either way, lim
x→∞

13
cx2 + 41

exists no matter what the value of the constant c happens

to be. �
Quiz #4. Friday, 12 October, 2001. [10 minutes]

1. Use the definition of the derivative to find f ′(x) if f(x) =
5

7x
. [10]

Solutions.
1.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

5
7(x+h) −

5
7x

h
= lim

h→0

5·7x−5·7(x+h)
7(x+h)·7x

h

= lim
h→0

35x− 35x− 35h
49xh(x+ h)

= lim
h→0

−35h
49xh(x+ h)

= lim
h→0

−5
7x(x + h)

= − 5
7x2

�

Quiz #5. Friday, 19 October, 2001. [17 minutes]

Compute
dy

dx
for each of the following:

1. y =
2x+ 1
x2

[3] 2. y = ln (cos(x)) [3] 3. y = (x+ 1)5e−5x [4]

Solutions.

1.
dy

dx
=

2 · x2 − (2x+ 1) · 2x
x4

=
2x2 − 4x2 − 2x

x4
=
−2x(x+ 1)

x4
=
−2(x+ 1)

x3
�

2.
dy

dx
=

1
cos(x)

· d
dx

cos(x) =
1

cos(x)
· (− sin(x)) = − sin(x)

cos(x)
= − tan(x) �

3.

dy

dx
= 5(x+ 1)4 · e−5x + (x+ 1)5 · (−5)e−5x

= 5(x+ 1)4e−5x − 5(x+ 1)5e−5x

= 5(x+ 1)4e−5x(1− (x+ 1))
= −5x(x+ 1)4e−5x �

2



Quiz #6. Friday, 2 November, 2001. [20 minutes]

Find
dy

dx
. . .

1. . . . at the point that y = 3 and x = 1 if y2 + xy + x = 13. [4]

2. . . . in terms of x if exy = x. [3]

3. . . . in terms of x if y = x3x. [3]

Solutions.

1. We’ll use implicit differentiation. Differentiating both sides of y2 + xy + x = 13 with
respect to x and solving for dy

dx gives:

2y
dy

dx
+ 1y + x

dy

dx
+ 1 = 0

⇐⇒(2y + x)
dy

dx
+ (y + 1) = 0

⇐⇒dy

dx
=
−(y + 1)
2y + x

When y = 3 and x = 1, we get:

dy

dx

∣∣∣∣
x=1 & y=3

= − 3 + 1
2 · 3 + 1

= −4
7

�

2. In the case of exy = x, it is easiest to solve for y first . . .

exy = x⇐⇒ xy = ln(x)⇐⇒ y =
ln(x)
x

. . . and then differentiate using the quotient rule:

dy

dx
=

1
x · x− ln(x) · 1

x2
=

1− ln(x)
x2

�

3. y = x3x is a job for logarithmic differentiation. First,

y = x3x ⇐⇒ ln(y) = ln
(
x3x
)

= 3xln(x) ,

and differentiating both sides gives

d

dx
ln(y) =

d

dx
3xln(x)⇐⇒

(
d

dy
ln(y)

)(
dy

dx

)
= 3 · lnx+ 3x · 1

x

⇐⇒1
y
· dy
dx

= 3ln(x) + 3 .
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Solving for
dy

dx
and substituting back for y now gives:

dy

dx
= 3y(ln(x) + 1) = 3x3x(ln(x) + 1) �

Quiz #7. Friday, 9 November, 2001. [13 minutes]
1. Find all the maxima and minima of f(x) = x2e−x on (−∞,∞) and determine which

are absolute. [10]

Solutions.

1. First,

f ′(x) = 2x · e−x + x2 ·
(
−e−x

)
= 2xe−x − x2e−x = x(2− x)e−x ,

which equals 0 exactly when x = 0 or x = 2. (Note that e−x > 0 for all x.) When x < 0,
x < 0 and 2 − x > 0, so f ′(x) < 0; when 0 < x < 2, 2 − x > 0 and x > 0, so f ′(x) > 0;
and when x > 2, 2− x < 0 and x > 0, so f ′(x) < 0. Thus

x x < 0 x = 0 0 < x < 2 x = 2 2 < x
f ′(x) < 0 0 > 0 0 < 0
f(x) decreasing local min increasing local max decreasing

so f(0) = 0 is a local minimum and f(2) = 4/e2 is a local maximum.
It remains to check whether either local extreme point is an absolute extreme point of

the function. This can be done by taking the limit of f(x) as x→∞ and as x→ −∞, but
that is overkill for this problem. It is enough to note that f(x) = x2e−x ≥ 0 for all x, so
f(0) = 0 is an absolute minimum, but that f(−4) = (−4)2e−(−4) = 16e4 > 4/e2 = f(2),
so f(2) = 4/e2 is not an absolute maximum. �
Quiz #8. Friday, 23 November, 2001. [15 minutes]

1. A spherical balloon is being inflated at a rate of 1 m3/s. How is the diameter of the
balloon changing at the instant that the radius of the balloon is 2 m? [10]
[The volume of a sphere of radius r is V = 4

3πr
3.]

Solution.

1. Since V = 4
3πr

3,

1 =
dV

dt
=
dV

dr
· dr
dt

=
d

dt

(
4
3
πr3

)
· dr
dt

=
(

4
3
π · 3r2

)
· dr
dt

= 4πr2 · dr
dt
.

It follows that dr
dt = 1

4πr2 . At the instant in question, r = 2, so we have dr
dt = 1

4π22 = 1
16π .

Since the diameter, call it s, is twice the radius of the sphere, i.e. s = 2r, it follows
that at the instant that r = 2 m, the diameter is changing at a rate of ds

dt = d
dt(2r) =

2drdt = 2 · 1
16π = 1

8π m/s. �
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Quiz #9. Friday, 30 November, 2001. [20 minutes]

1. Use the Right-hand Rule to compute
3∫
0

(
2x2 + 1

)
dx. [6]

[You may need to know that
n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.]

2. Set up and evaluate the Riemann sum for
2∫
0

(3x+ 1)dx corresponding to the partition

x0 = 0, x1 = 2
3 , x2 = 4

3 , x3 = 2, with x∗1 = 1
3 , x∗2 = 1, and x∗3 = 5

3 . [4]

Solutions.

1. The Right-hand Rule comes down to the formula:∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f

(
a+ i

b− a
n

)
· b − a

n

In this problem, f(x) = 2x2 + 1, a = 0, and b = 3:

∫ 3

0

(
2x2 + 1

)
dx = lim

n→∞

n∑
i=1

(
2
(

0 + i
3− 0
n

)2

+ 1

)
· 3− 0

n

= lim
n→∞

3
n

n∑
i=1

(
2

9i2

n2
+ 1
)

= lim
n→∞

3
n

[
n∑
i=1

(
18i2

n2

)
+

n∑
i=1

1

]

= lim
n→∞

3
n

[
18
n2

n∑
i=1

i2 + n

]

= lim
n→∞

3
n

[
18
n2
· n(n+ 1)(2n + 1)

6
+ n

]
= lim
n→∞

3
n

[
3
n

(n+ 1)(2n + 1) + n

]
= lim
n→∞

3
n

[
3
n

(
2n2 + 3n+ 1

)
+ n

]
= lim
n→∞

3
n

[
6n+ 9 +

3
n

+ n

]
= lim
n→∞

3
n

[
7n+ 9 +

3
n

]
= lim
n→∞

[
21 +

27
n

+
9
n2

]
= 21 + 0 + 0 = 21
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One could skip the odd step here or there . . . �

2. The Riemann sum for
2∫
0

(3x+ 1)dx for the given partition and choice of points is (and

evaluates to):

3∑
i=1

f (x∗i ) · (xi − xi−1) =
3∑
i=1

(3x∗i + 1) · (xi − xi−1)

=
(

3 · 1
3

+ 1
)(

2
3
− 0
)

+ (3 · 1 + 1)
(

4
3
− 2

3

)
+
(

3 · 5
3

+ 1
)(

2− 4
3

)
=2 · 2

3
+ 4 · 2

3
+ 6 · 2

3
=

4
3

+
8
3

+
12
3

=
4 + 8 + 12

3
=

24
3

= 8 �

Quiz #10. Friday, 7 December, 2001. [20 minutes]

Given that
4∫
1

xdx = 7.5 and
4∫
1

x2 dx = 21, use the properties of definite integrals to:

1. Evaluate
4∫
1

(x+ 1)2 dx. [5]

2. Find upper and lower bounds for
4∫
1

x3/2 dx. [5]

Solutions.

1. Using the given data and some properties of definite integrals:∫ 4

1

(x+ 1)2 dx =
∫ 4

1

(
x2 + 2x+ 1

)
dx

=
∫ 4

1

x2 dx+
∫ 4

1

2xdx+
∫ 4

1

1 dx

= 21 + 2
∫ 4

1

xdx + 1 · (4 − 1)

= 21 + 2 · 7.5 + 3
= 21 + 15 + 3 = 39 �

2. First, note that x ≤ x3/2 ≤ x2 when x ≥ 1. Using the given data and the order
properties of definite integrals gives:

7.5 =
∫ 4

1

xdx ≤
∫ 4

1

x3/2 dx ≤
∫ 4

1

x2 dx = 21

Thus 7.5 is a lower bound and 21 is an upper bound for
4∫
1

x3/2 dx. �
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Quiz #11. Friday, 11 January, 2002. [15 minutes]

1. Compute the indefinite integral
∫ (

x2 + x+ 1
)3 (4x+ 2)dx. [5]

2. Find the area under the graph of f(x) = sin(x) cos(x) for 0 ≤ x ≤ π
2

. [5]

Solutions.

1. We will use the substitution u = x2 + x + 1 to compute the integral; note that
du = (2x+ 1)dx.∫ (

x2 + x+ 1
)3 (4x+ 2)dx =

∫ (
x2 + x+ 1

)3 2(2x+ 1)dx

=
∫
u32du = 2

u4

4
+ c =

1
2
u4 + c =

1
2
(
x2 + x+ 1

)4 + c �

2. First, note that both sin(x) and cos(x), and hence also sin(x) cos(x), are non-negative
for 0 ≤ x ≤ π

2 . Hence the area under the graph of f(x) = sin(x) cos(x) for 0 ≤ x ≤ π
2

is given by the definite integral
π/2∫
0

sin(x) cos(x)dx. We will compute this integral

using the substitution u = sin(x), so du = cos(x)dx. Note also that u = 0 when x = 0
and u = 1 when x = π

2 .

∫ π/2

0

sin(x) cos(x)dx =
∫ 1

0

u du =
u2

2

∣∣∣∣1
0

=
12

2
− 02

2
=

1
2

�

Quiz #12. Friday, 18 January, 2002. [15 minutes]

1. Compute
e∫
1

ln(x2)
x dx. [5]

2. Find the area of the region between the curves y = x3 − x and y = x− x3. [5]

Solutions.

1. We’ll compute the integral using the substitution u = ln(x), so du = 1
xdx. Note that

ln
(
x2
)

= 2ln(x), and that u = 0 when x = 1 and u = 1 when x = e.

∫ e

1

ln
(
x2
)

x
dx =

∫ e

1

2ln(x)
x

dx =
∫ 1

0

2u du = 2
u2

2

∣∣∣∣1
0

= u2
∣∣1
0

= 12 − 02 = 1 �

2. First, we need to find the points where these curves intersect:

x3 − x = x− x3 ⇔ 2x3 = 2x⇔ x3 = x

x = 0 is one solution to x3 = x; when x 6= 0, we can divide the equation by x to get x2 = 1,
so x = −1 and x = 1 are the other solutions to x3 = x. From −1 to 0, x3 − x ≥ x − x3,
and from 0 to 1, x− x3 ≥ x3 − x. (This can be done with some algebra and knowledge of
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inequalities, or you can just test each expression at some points in between, e.g. x = − 1
2

and x = 1
2 .)

The area between the two curves is then given by:∫ 0

−1

[(
x3 − x

)
−
(
x− x3

)]
dx+

∫ 1

0

[(
x− x3

)
−
(
x3 − x

)]
dx

=
∫ 0

−1

[
2x3 − 2x

]
dx+

∫ 1

0

[
2x− 2x3

]
dx

=
[
2
x4

4
− 2

x2

2

]∣∣∣∣0
−1

+
[
2
x2

2
− 2

x4

4

]∣∣∣∣1
0

=
[
x4

2
− x2

]∣∣∣∣0
−1

+
[
x2 − x4

2

]∣∣∣∣1
0

=
[(

04

2
− 02

)
−
(

(−1)4

2
− (−1)2

)]
+
[(

12 − 14

2

)
−
(

02 − 04

2

)]
=
[
0−

(
−1

2

)]
+
[

1
2
− 0
]

=
1
2

+
1
2

= 1 �

Quiz #13. Friday, 25 January, 2002. [19 minutes]
1. Find the volume of the solid obtained by revolving the region in the first quadrant

bounded by y = 1
x , y = x, and x = 2 about the x-axis. [10]

Solution.
1. First, we find where the curves intersect. y = 1

x and y = x intersect when 1
x = x, i.e.

when x2 = 1. Since we are looking for a region in the first quadrant, we discard the
root x = −1 and keep x = 1; plugging into either equation for y gives us the point
(1, 1). y = 1

x and x = 2 intersect at the point
(
2, 1

2

)
, and y = x and x = 2 intersect at

(2, 2). It is not too hard — if one is careful! — to deduce that the region is bounded
above by y = x and below by y = 1

x for 1 ≤ x ≤ 2. Rotating this region about the
x-axis gives the solid sketched below.
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We will find the volume of this solid using the washer method. (A typical washer
for this solid is also drawn in the sketch.) Since we rotated about a horizontal line, the
washers will be stacked along this line (the x-axis) and so we will need to integrate with
respect to x. Note that the outer radius of the washer at x is R = x and the inner radius
is r = 1

x , so the volume is given by:

∫ 2

1

(
πR2 − πr2

)
dx = π

∫ 2

1

(
x2 − 1

x2

)
dx

= π

(
x3

3
− −1

x

)∣∣∣∣2
1

= π

(
x3

3
+

1
x

)∣∣∣∣2
1

= π

[(
8
3

+
1
2

)
−
(

1
3

+ 1
)]

=
11
6
π �

Quiz #14. Friday, 1 February, 2002. [17 minutes]

1. Suppose the region bounded above by y = 1 and below by y = x2 is revolved about
the line x = 2. Sketch the resulting solid and find its volume. [10]

Solution.

1. y = 1 intersects y = x2 when x2 = 1, i.e. when x = ±1. The region between y = 1
and y = x2, −1 ≤ x ≤ 1, when revolved about x = 2, gives the solid sketched below.

We will find the volume of this solid using the shell method. (A typical cylindrical
shell for this solid is also drawn in the sketch.) Since we rotated about a vertical line, the
shell will be nested around this line (x = 2) and so we will need to integrate with respect
to x in order to integrate in a direction perpendicular to the shells. Note that the radius
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of the shell at x is r = 2− x and the height is h = 1− x2, so the volume is given by:

∫ 1

−1

2πrh dx =
∫ 1

−1

2π(2− x)
(
1− x2

)
dx

= π

∫ 1

−1

(
4− 2x− 4x2 + 2x3

)
dx

= π

(
4x− x2 − 4

3
x3 +

1
2
x4

)∣∣∣∣1
−1

= π

[(
4− 1− 4

3
+

1
2

)
−
(
−4− 1 +

4
3

+
1
2

)]
=

16
3
π �

Quiz #15. Friday, 15 February, 2002. [25 minutes]

Evaluate each of the following integrals.

1.
∫ π/4

0

tan2(x)dx [4] 2.
∫ √

x2 + 4x+ 5 dx [6]

Solution.

1. ∫ π/4

0

tan2(x)dx =
∫ π/4

0

(
sec2(x)− 1

)
dx

= (tan(x) − x)|π/40 =
(

1− π

4

)
− (0− 0) = 1− π

4
�

2. ∫ √
x2 + 4x+ 5 dx =

∫ √
(x+ 2)2 + 1 dx

Let w = x+ 2, so dw = dx.

=
∫ √

w2 + 1 dw

Let w = tan(t), so dw = sec2(t)dt.

=
∫ √

tan2(t) + 1 sec2(t)dt =
∫ √

sec2(t) sec2(t)dt

=
∫

sec3(t)dt
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We will use integration by parts to compute this trig integral. Let u = sec(t) and
dv = sec2(t)dt, so du = sec(t) tan(t)dt and v = tan(t). Then∫

sec3(t)dt = sec(t) tan(t)−
∫

sec(t) tan2(t)dt

= sec(t) tan(t)−
∫

sec(t)
(
sec2(t)− 1

)
dt

= sec(t) tan(t)−
∫ (

sec3(t)− sec(t)
)
dt

= sec(t) tan(t)−
∫
sec3(t)dt +

∫
sec(t)dt

It follows that
2
∫

sec3(t)dt = sec(t) tan(t) +
∫

sec(t)dt ,

so ∫
sec3(t)dt =

1
2

[
sec(t) tan(t) +

∫
sec(t)dt

]
=

1
2

sec(t) tan(t) +
1
2

ln (sec(t) + tan(t)) + C .

(It really helps to have memorized that
∫

sec(t)dt = ln (sec(t) + tan(t)) + C . . . )
It remains for us to substitute back to put the answer in terms of x:∫ √
x2 + 4x+ 5 dx =

∫
sec3(t)dt

=
1
2

sec(t) tan(t) +
1
2

ln (sec(t) + tan(t)) + C

=
1
2
w
√

1 + w2 +
1
2

ln
(
w +

√
1 + w2

)
+ C

. . . since when tan(t) = w, sec(t) =
√

1 + w2.

=
1
2

(x+ 2)
√

1 + (x+ 2)2 +
1
2

ln
(

(x+ 2) +
√

1 + (x+ 2)2
)

+ C �

Quiz #16. Friday, 1 March, 2002. [25 minutes]
1. Evaluate the following integral:∫

x2 − 2x− 6
(x2 + 2x+ 5) (x− 1)

dx

Solution. This is a job for partial fractions. First, note that the quadratic factor in the
denominator is irreducible since x2 + 2x+ 5 = x2 + 2x+ 1 + 4 = (x + 1)2 + 4 > 0 for all
x. Thus

x2 − 2x− 6
(x2 + 2x+ 5) (x− 1)

=
Ax+B

x2 + 2x+ 5
+

C

x− 1
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for some constants A, B, and C . Putting the right-hand side of the equation above over a
common denominator of x(x− 1)2 would give a numerator equal to the numerator of the
left-hand side:

x2 − 2x− 6 = (Ax+B)(x − 1) + C(x2 + 2x+ 5)
= Ax2 − Ax+Bx−B + Cx2 + 2Cx+ 5C
= (A + C)x2 + (−A +B + 2C)x+ (−B + 5C)

Thus A+C = 1, −A+B+2C = −2, and −B+5C = −6, which equations we need to solve
for A, B, and C . From the first and third of these equations we get that A = 1− C and
B = 6+5C . Plugging these into the second equation gives −2 = −(1−C)+(6+5C)+2C =
5− 8C , so C = −7/8. It follows that A = 15/8 and B = 13/8. Hence:∫

x2 − 2x− 6
(x2 + 2x+ 5) (x− 1)

dx =
∫ [ 15

8 x+ 13
8

x2 + 2x+ 5
+
− 7

8

x− 1

]
dx

=
1
8

∫
15x+ 13
x2 + 2x+ 5

dx− 7
8

∫
1

x− 1
dx

If u = x2 + 2x+ 5, then du = (2x+ 2)dx = 2(x + 1)dx, so we want to split 15x+ 13 into
a multiple of x+ 1 plus a constant.

=
1
8

∫
15(x+ 1)− 2
x2 + 2x+ 5

dx− 7
8

ln(x− 1)

=
1
8

∫
15(x+ 1)
x2 + 2x+ 5

dx− 1
8

∫ −2
x2 + 2x+ 5

dx− 7
8

ln(x− 1)

Use the substitution u = x2 + 2x + 5 in the first part, and complete the square in the
second part.

=
15
8

∫
1
u

1
2
du+

2
8

∫
1

(x+ 1)2 + 4
dx− 7

8
ln(x− 1)

Use the substitution w = x+ 1, so dw = dx, in the second part.

=
15
16

ln(u) +
1
4

∫
1

w2 + 4
dw − 7

8
ln(x− 1)

Substitute back in the first part, and substitute w = 2s, so dw = 2ds in the second.

=
15
16

ln
(
x2 + 2x+ 5

)
+

1
4

∫
1

4s2 + 4
2ds− 7

8
ln(x− 1)

=
15
16

ln
(
x2 + 2x+ 5

)
+

1
4
· 2

4

∫
1

s2 + 1
ds− 7

8
ln(x− 1)

=
15
16

ln
(
x2 + 2x+ 5

)
+

1
8

arctan(s)− 7
8

ln(x− 1) +K
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. . . where K is a constant.

=
15
16

ln
(
x2 + 2x+ 5

)
+

1
8

arctan
(w

2

)
− 7

8
ln(x− 1) +K

=
15
16

ln
(
x2 + 2x+ 5

)
+

1
8

arctan
(
x− 1

2

)
− 7

8
ln(x− 1) +K

Whew! �

Quiz #17. Friday, 8 March, 2002. [25 minutes]

1. Evaluate the following integral:

∫ ∞
2

1
x(x− 1)2

dx

Solution. Note that x(x − 1)2 6= 0 for all x with 2 ≤ x < ∞, so we don’t have to worry
about the integral being improper except by way of the upper limit of ∞. By definition,

∫ ∞
2

1
x(x− 1)2

dx = lim
t→∞

∫ t

2

1
x(x − 1)2

dx

which leaves us with the task of integrating
∫ t

2
1

x(x−1)2 dx and then evaluating the limit as
t→∞.

Computing the integral requires us to decompose 1
x(x−1)2 using partial fractions. Note

that the numerator has degree less than the degree of the denominator, but that we do
have a repeated factor in the denominator. Thus

1
x(x− 1)2

=
A

x
+

B

x− 1
+

C

(x− 1)2

for some constants A, B, and C . Putting the right-hand side of the equation above over a
common denominator of x(x− 1)2 would give a numerator equal to the numerator of the
left-hand side:

1 =A(x − 1)2 +Bx(x − 1) + Cx

=A
(
x2 − 2x+ 1

)
+B

(
x2 − x

)
+ Cx

=(A +B)x2 + (−2A −B + C)x+ A.

Thus A+B = 0, −2A−B +C = 0, and A = 1, from which it quickly follows that A = 1,

13



B = −1, and C = 1. Hence∫ ∞
2

1
x(x − 1)2

dx = lim
t→∞

∫ t

2

1
x(x− 1)2

dx

= lim
t→∞

∫ t

2

[
1
x

+
−1
x− 1

+
1

(x− 1)2

]
dx

= lim
t→∞

[∫ t

2

1
x
dx−

∫ t

2

1
x− 1

dx+
∫ t

2

1
(x− 1)2

dx

]
= lim
t→∞

[
ln(x)|t2 − ln(x− 1)|t2 +

−1
(x− 1)

∣∣∣∣t
2

]

= lim
t→∞

[
(ln(t)− ln(2))− (ln(t− 1)− ln(2− 1)) +

(
−1

(t − 1)
− −1

(2− 1)

)]
= lim
t→∞

[
ln(t)− ln(t− 1)− 1

(t − 1)
− ln(2) + ln(1) +

1
1

]
= lim
t→∞

[
ln
(

t

t− 1

)
− 1

(t− 1)
− ln(2) + 0 + 1

]
= 1− ln(2)

since lim
t→∞

t
t−1 = lim

t→∞
1

1−1/t = 1
1−0 = 1, so lim

t→∞
ln
(

t
t−1

)
= ln(1) = 0, while lim

t→∞
1

(t−1) = 0.
�

Quiz #18. Friday, 15 March, 2002. [18 minutes]

Determine whether each of the following series converges or diverges.

1.
∞∑
n=0

[
1

n+ 1
+

3n

3n + 1

]
[4] 2.

∞∑
n=0

253
3n + 1

[6]

Solutions.

1. We will apply the Divergence Test.

lim
n→∞

[
1

n+ 1
+

3n

3n + 1

]
=
[

lim
n→∞

1
n+ 1

]
+
[

lim
n→∞

3n

3n + 1

]
= 0 + lim

n→∞

3n

3n + 1
· 1/3n

1/3n

= lim
n→∞

1
1 + 1/3n

=
1

1 + 0
= 1 6= 0

It follows that the given series diverges. �
2. We will apply the Comparison Test. Note that

0 <
253

3n + 1
<

253
3n

14



for all n ≥ 0, because reducing the denominator increases the fraction. The series
∞∑
n=0

253
3n

is a geometric series with a = 253 and r = 1
3 , and since

∣∣1
3

∣∣ < 1, it converges. It follows by
the Comparison Test that the given series converges as well. �
Bonus Quiz. Monday, 18 March, 2002. [15 minutes]

Compute any two of 1–3.

1. lim
t→∞

te−t [5] 2.
∫ ∞

0

te−t dt [5] 3.
∞∑
n=0

1
n2 + 3n+ 2

[5]

Solutions.

1. lim
t→∞

te−t = lim
t→∞

t

et
= lim

t→∞

d
dt t
d
dte

t
= lim

t→∞

1
et

= 0, using l’Hôpital’s Rule and the fact

that lim
t→∞

et =∞. �
2. We’ll need l’Hôpital’s Rule and the fact that lim

s→∞
es =∞ again:

∫ ∞
0

te−t dt = lim
s→∞

s∫
0

te−t dt

Use integration by parts with u = t and dv = e−tdt,
so du = dt and v = −e−t.

= lim
s→∞

[
−te−t

∣∣s
0
−
∫ s

0

(
−e−t

)
dt

]
= lim

s→∞

[(
−se−s

)
−
(
−0e−0

)
− e−t

∣∣s
0

]
= lim

s→∞

[
−se−s −

(
e−s − e−0

)]
= lim

s→∞

[
−se−s − e−s + 1

]
= lim

s→∞

[
− s

es
− 1
es

]
+ 1

= lim
s→∞

[
−

d
ds
s

d
ds
es
− 0 + 1

]

= lim
s→∞

[
− 1
es

]
+ 1

= −0 + 1
= 1 �

3. Note that n2 + 3n + 2 = (n + 1)(n + 2) and that, using the usual partion fraction

nonsense,
1

n2 + 3n+ 2
=

1
n+ 1

− 1
n+ 2

. Thus the kth partial sum of the given series
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is

Sk =
k∑

n=0

1
n2 + 3n+ 2

=
k∑
n=0

(
1

n+ 1
− 1
n+ 2

)
=
(

1
0 + 1

− 1
0 + 2

)
+
(

1
1 + 1

− 1
1 + 2

)
+ · · ·+

(
1

k + 1
− 1
k + 2

)
=
(

1
1
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
3
− 1

4

)
+ · · ·+

(
1

k + 1
− 1
k + 2

)
= 1− 1

k + 2
,

so
∞∑
n=0

1
n2 + 3n+ 2

= lim
k→∞

Sk = lim
k→∞

(
1− 1

k + 2

)
= 1− 0 = 1 . �

Quiz #19. Friday, 22 March, 2002. [20 minutes]

Determine whether each of the following series converges or diverges.

1.
∞∑
n=1

1
nn

[5] 2.
∞∑
n=0

4n+ 12
n2 + 6n+ 13

[5]

Solutions.

1. We will use the Comparison Test. Note that for all n > 2, nn > 2n, so

0 <
1
nn

<
1

2n
.

∞∑
n=1

1
2n

is the geometric series with a =
1
2

and r =
1
2

, and it converges because

|r| = 1
2
< 1. It follows by the Comparison Test that

∞∑
n=1

1
nn

converges as well.

One could also conveniently use the Limit Comparison Test. �

2. We will use the Limit Comparison Test, comparing the given series to
∞∑
n=0

1
n

. (Why

compare the given series to this one? Note that the terms of the given series are
rational functions of n in which the top power in the numerator is one less than the

top power in the denominator.
1
n

is the simplest rational function with this pattern.)
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Now:

lim
n→∞

1
n

4n+12
n2+6n+13

= lim
n→∞

1
n
· n

2 + 6n+ 13
4n+ 12

= lim
n→∞

n2 + 6n+ 13
4n2 + 12n

= lim
n→∞

n2 + 6n+ 13
4n2 + 12n

· 1/n2

1/n2

= lim
n→∞

1 + 6
n + 13

n2

4 + 12
n

=
1 + 0 + 0

4 + 0
=

1
4

Since 0 < 1
4 <∞, it follows by the Limit Comparison Test that the series

∞∑
n=0

1
n

and

∞∑
n=0

4n+ 12
n2 + 6n+ 13

both converge or both diverge. Since
∞∑
n=0

1
n

is known to diverge, it

myst be the case that
∞∑
n=0

4n+ 12
n2 + 6n+ 13

diverges as well.

This problem could also be done using the Comparison Test or (very conveniently)
the Integral Test. �
Quiz #20. Tuesday, 2 April, 2002. [10 minutes]

1. Determine whether the series
∞∑
n=0

(−1)n + cos(nπ)
n+ 1

converges absolutely, converges

conditionally, or diverges. [10]

Solution. The key here is that cos(nπ) = (−1)n since cos is equal to 1 at even multiples
of π and −1 at odd multiples of π. Hence

∞∑
n=0

(−1)n + cos(nπ)
n+ 1

=
∞∑
n=0

(−1)n + (−1)n

n+ 1
=
∞∑
n=0

2 · (−1)n

n+ 1
= 2

∞∑
n=0

(−1)n

n+ 1
,

so the given series will converge (or not) exactly as
∞∑
n=0

(−1)n

n+ 1
does. However, this is a

series beaten to death in class and the text in very slight disguise:

∞∑
n=0

(−1)n

n+ 1
=

1
1
− 1

2
+

1
3
− 1

4
+ · · · =

∞∑
k=1

(−1)k−1

k
= (−1)

∞∑
k=1

(−1)k

k

(Note that the indices are related via k = n+ 1.)
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We know already that
∞∑
k=1

(−1)k

k
converges – we showed that in class using the Al-

ternating Series Test. It does not converge absolutely because
∞∑
k=1

1
k

does not converge

– we showed that, in effect using the Integral Test, on Assignment #6. Thus the series
∞∑
k=1

(−1)k

k
, and hence given series too, converges conditionally. �

Quiz #21. Friday, 5 April, 2002. [10 minutes]

1. Find a power series which, when it converges, equals f(x) =
3x2

(1− x3)2 . [10]

Solution. Note that the derivative of part of the denominator f(x),
d

dx

(
1− x3

)
= −3x2,

is a constant multiple to the numerator, 3x2. This makes it easy to integrate f(x) using
the substitution u = 1− x3 (so du = −3x2dx and (−1)du = 3x2dx):∫

f(x)dx =
∫

3x2

(1− x3)2 dx =
∫

1
u2

(−1)du = −
∫
u−2 du

= −
(
−u−1

)
+ C =

1
u

+ C =
1

1− x3
+ C

The point here is that it is easy to find a power series representation of the antiderivative

of f(x) because
1

1− x3
is the sum of the geometric series with a = 1 and r = x3. Thus:

∫
f(x)dx =

1
1− x3

+ C =
∞∑
n=0

(
x3
)n

=
∞∑
n=0

x3n

The power series of f(x) is the derivative of the power series for
∫
f(x)dx (at least for

those x for which this series converges absolutely):

f(x) =
3x2

(1− x3)2 =
d

dx

( ∞∑
n=0

x3n

)
=
∞∑
n=0

d

dx
x3n =

∞∑
n=0

3nx3n−1

Note that the first term, for n = 0, has a coefficient of 3 · 0 = 0, so it doesn’t matter that
the corresponding power of x is negative. �
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