
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2020

Solutions to the Take-Home Final Examination
Released at noon on Tuesday, 14 April, 2020.

Due by noon on Friday, 17 April, 2020.

Instructions

• You may consult your notes, handouts, and textbook from this course and any other
math courses you have taken or are taking now. You may also use a calculator.
However, you may not consult any other source, or give or receive any other aid,
except for asking the instructor to clarify instructions or questions.
• Please submit an electronic copy of your solutions, preferably as a single pdf (a scan

of handwritten solutions should be fine), via the Assignment module on Blackboard.
If that doesn’t work, please email your solutions to the intructor.
• Do all three (3) of Parts I – III, and, if you wish, Part IV as well.

Part I. Do both of 1 and 2. [40 = 2×20 each]

1. Compute the integrals in four (4) of a – f. [20 = 4×5 each]

a.

∫ π/2

0

cos(x)

√
1 + sin2(x) dx b.

∫
2x3e−x

2

dx c.

∫
(x+ 1)2

x2 + 1
dx

d.

∫ π/2

−π/2
sin2(x) cos3(x) dx e.

∫ ∞
0

xe−x dx f.

∫
ex cos(x) dx

Solutions. a. (Substitutions and a reduction formula.) We will first use the substitution

u = sin(x), so du = cos(x) dx, and change the limits as we go along:
x 0 π/2
u 0 1

. This

gives us: ∫ π/2

0

cos(x)

√
1 + sin2(x) dx =

∫ 1

0

√
1 + u2 du

We will now use the substitution u = tan(θ), so du = sec2(θ), and change the limits again

as we go along:
u 0 1
θ 0 π/4

. Thus:

∫ π/2

0

cos(x)

√
1 + sin2(x) dx =

∫ 1

0

√
1 + u2 du =

∫ π/4

0

√
1 + tan2(θ) sec2(θ) dθ

=

∫ π/4

0

√
sec2(θ) sec2(θ) dθ =

∫ π/4

0

sec3(θ) dθ

[Those disliking the two-stage substitution above are invited to consider trying to substitute
directly, sin(x) = tan(θ), and see what they can make of that. It works if you are careful
enough, but it’s very easy to go wrong.]
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At this point we will invoke the integral reduction formula for powers of sec(θ):∫ π/2

0

cos(x)

√
1 + sin2(x) dx =

∫ π/4

0

sec3(θ) dθ

=
1

3− 1
tan(θ) sec3−2(θ)

∣∣∣∣π/4
0

+
3− 2

3− 1

∫ π/4

0

sec(θ) dθ

=
1

2
tan(θ) sec(θ)

∣∣∣∣π/4
0

+
1

2
ln (sec(θ) + tan(θ))

∣∣∣∣π/4
0

=
1

2
tan

(π
4

)
sec
(π

4

)
− 1

2
tan(0) sec(0)

+
1

2
ln
(

sec
(π

4

)
+ tan

(π
4

))
− 1

2
ln (tan(0) + sec(0))

=
1

2
· 1 ·
√

2− 1

2
· 0 · 1 +

1

2
ln
(√

2 + 1
)
− 1

2
ln(0 + 1)

=
1√
2

+
1

2
ln
(√

2 + 1
)

�

b. (Substitution and integration by parts.) We will first use the substitution w = −x2, so
dw = −2x dx and hence 2x dx = (−1) dw, while x2 = (−1)w. Then∫

2x3e−x
2

dx =

∫
2x · x2 · e−x

2

dx =

∫
(−1)wew (−1) dw =

∫
wew dw ,

at which point we can easily use integration by parts with u = w and v′ = ew, so u′ = 1
and v = ew.∫

2x3e−x
2

dx =

∫
wew dw = wew −

∫
1ew dw = wew − ew + C

= −x2e−x
2

− e−x
2

+ C = −
(
x2 + 1

)
e−x

2

+ C �

c. (Algebra and substitution.) After a bit of algebra we will use the substitution u = x2+1,
so du = 2x dx.∫

(x+ 1)2

x2 + 1
dx =

∫
x2 + 2x+ 1

x2 + 1
dx =

∫ (
x2 + 1

x2 + 1
+

2x

x2 + 1

)
dx

=

∫
1 dx+

∫
2x

x2 + 1
dx = x+

∫
1

u
du = x+ ln(u) + C

= x+ ln
(
x2 + 1

)
+ C

One could go whole hog and use the partial fraction technology after multiplying out
(x+ 1)2, but it’s quicker to do it as above. �
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d. (Trig identity and substitution.) We will use the identity cos2(x) = 1 − sin2(x) to set
up the substitution u = sin(x), so du = cos(x) dx, and change the limits as we go along,

so
x −π/2 π/2
u −1 1

.

∫ π/2

−π/2
sin2(x) cos3(x) dx =

∫ π/2

−π/2
sin2(x) cos2(x) cos(x) dx

=

∫ π/2

−π/2
sin2(x)

(
1− sin2(x)

)
cos(x) dx

=

∫ 1

−1
u2
(
1− u2

)
du =

∫ 1

−1

(
u2 − u4

)
du

=

(
u3

3
− u5

5

)∣∣∣∣1
−1

=

(
13

3
− 15

5

)
−
(

(−1)3

3
− (−1)5

5

)
=

(
1

3
− 1

5

)
−
(
−1

3
− −1

5

)
=

1

3
− 1

5
+

1

5
− 1

5

=
2

3
− 2

5
=

10

15
− 6

15
=

4

15

One could also do this one using the reduction formula for combined powers of sin(x) and
cos(x). �

e. Improper integral and integration by parts. We will first use integration by parts to
work out the necessary indefinite integral and then use that to help compute the given
improper integral. The integration by parts will use u = x and v′ = e−x, so u′ = 1 and
v = (−1)e−x.∫

xe−x dx = x(−1)e−x −
∫

1(−1)e−x dx = −xe−x +

∫
e−x dx

= −xe−x − e−x + C = −(x+ 1)e−x + C

Now for the improper integral:∫ ∞
0

xe−x dx = lim
a→∞

∫ a

0

xe−x dx = lim
a→∞

−(x+ 1)e−x
∣∣a
0

= lim
a→∞

([
−(a+ 1)e−a

]
−
[
−(1 + 0)e−0

])
= lim
a→∞

(
−a− 1

ea
+ 1

)
[l’Hôpital’s Rule] = 1 + lim

a→∞

−a− 1

ea
→ −∞
→ +∞ = 1 + lim

a→∞

d
da (−a− 1)

d
dae

a

= 1 + lim
a→∞

−1

ea
→ −1
→∞ = 1 + 0 = 1 �

f. (Integration by parts and some algebra.) We will first use integration by parts, with
u = ex and v′ = cos(x), so u′ = ex and v = sin(x).∫

ex cos(x) dx = ex sin(x)−
∫
ex sin(x) dx
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We will use integration by parts again, this time with s = ex and t′ = sin(x), so s′ = ex

and t = − cos(x), to handle the remaining integral.∫
ex cos(x) dx = ex sin(x)−

∫
ex sin(x) dx

= ex sin(x)−
[
ex (− cos(x))−

∫
ex (− cos(x)) dx

]
= ex sin(x) + ex cos(x)−

∫
ex cos(x) dx

Comparing the beginning and the end of this sequence of equations, we go on to solve for∫
ex cos(x) dx:

∫
ex cos(x) dx = ex sin(x) + ex cos(x)−

∫
ex cos(x) dx

=⇒ 2

∫
ex cos(x) dx = ex sin(x) + ex cos(x)

=⇒
∫
ex cos(x) dx =

1

2
(ex sin(x) + ex cos(x)) + C

We belatedly remember the constant of integration at the last step . . . :-) �

2. Determine whether the series converges or not in four (4) of a – f. [20 = 4×5 each]

a.
∞∑
n=1

en

2nnn
b.

∞∑
n=0

3n2−n c.
∞∑
n=0

(−1)n

en + n

d.

∞∑
n=2

1

ln(n)
e.

∞∑
n=3

1

n [ln(n)]
2 f.

∞∑
n=0

en

e2n + 1

Solutions. a. (Root Test) Since the individual terms are built out of nth powers using
only multiplication and division, we try the Root Test.

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣ en

2nnn

∣∣∣∣1/n = lim
n→∞

∣∣∣( e

2n

)n∣∣∣1/n = lim
n→∞

e

2n

→ e
→∞ = 0

Since the limit exists and is less than 1, the Root Test tells us that the series converges
absolutely. �

b. (Geometric series) Since
∞∑
n=0

3n2−n =
∞∑
n=0

3n

2n
=
∞∑
n=0

(
3

2

)n
is a geometric series with

common ratio r =
3

2
> 1, it diverges.

The Root and Ratio Tests would also solve this problem very quickly. �
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c. (Basic Comparison Test) Note that 0 ≤
∣∣∣∣ (−1)n

en + n

∣∣∣∣ =
1

en + n
≤ 1

en
for all n ≥ 0 because

en + n ≥ en when n ≥ 0. Since
∞∑
n=0

1

en
=
∞∑
n=0

(
1

e

)n
is a geometric series with common

ratio |r| = 1

e
< 1, it converges. It follows by the (Basic) Comparison Test that the given

series converges absolutely, and hence converges.
The Limit Comparison and Alternating Series Tests would also work to solve this

problem, with increasing amounts of overall effort. �

d. (Basic Comparison Test) Since 0 < ln(n) < n for all n ≥ 2, we have 0 ≤ 1

n
<

1

ln(n)

for all n ≥ 2. Since the harmonic series
∞∑
n=2

1

n
is known to diverge (shown in class, or you

could use the p-Test or the Integral Test), it follows by the (Basic) Comparison Test that
the given series diverges.

The Limit Comparison Test would also work here, albeit with a little more effort. �

e. (Integral Test) Passes the Divergence Test, which only means it might converge; isn’t
an alternating series, so the Alternating Series Test doesn’t apply; isn’t a series of terms
that are rational functions of n, so neither p-Test applies; Comparison Tests might work,
if one could think of what to compare it to; no nth powers, so the Root Test would be
hard to use; and it’s hard to deal with the limit the Ratio Test requires. What to do? By
process of elimination, we try the Integral Test.

We will use the substitution u = ln(x), so du =
1

x
dx, to work out the definite integral

inside the limit below.∫ ∞
3

1

x [ln(x)]
dx = lim

a→∞

∫ a

3

1

x [ln(x)]
dx = lim

a→∞

∫ x=a

x=3

1

u2
du = lim

a→∞

∫ x=a

x=3

u−2 du

= lim
a→∞

u−1

−1

∣∣∣∣x=a
x=3

= lim
a→∞

−1

u

∣∣∣∣x=a
x=3

= lim
a→∞

(
−1

a
− −1

3

)
= 0 +

1

3
=

1

3

Since the corresponding improper integral converges, the Integral Test tells us that the

series
∞∑
n=3

1

n [ln(n)]
2 does so as well. �

f. (Basic Comparison Test) We have 0 <
en

e2n + 1
<

en

e2n
=

1

en
for all n ≥ 0 because

e2n + 1 > e2n. Since the series

∞∑
n=0

1

en
=

∞∑
n=0

(
1

e

)n
is a geometric series with common

ration |r| = 1

e
< 1, it converges. It follows by the (Basic) Comparison Test that the series

∞∑
n=0

en

e2n + 1
converges as well.

This problem could also be done using the Limit Comparison, Integral, Ratio, or even
the Root Test, with varying degrees of difficulty in computing the relevant limits. �
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Part II. Do any two (2) of 3 – 5. [20 = 2×10 each]

3. Find the volume of the solid obtained by revolving the region below y = 4 − x2 and
above y = 0, for 0 ≤ x ≤ 2, about the y-axis. [10]

Solution. Here is a crude sketch of the solid:

We will use the method of cylindrical shells to compute the volume of the solid. (Doing
so using the disk method is about equally easy.) The shell at x, for an x with 0 ≤ x ≤ 2,
has radius r = x − 0 = x and height h =

(
4− x2

)
− 0 = 4 − x2. We will use x as the

variable of integration because the shells are perpendicular to the x-axis. It follows that
the volume of the solid is given by:

V =

∫ 2

0

2πrh dx =

∫ 2

0

2πx
(
4− x2

)
dx = 2π

∫ 2

0

(
4x− x3

)
dx

= 2π

(
2x2 − x4

4

)∣∣∣∣2
0

= 2π

(
2 · 22 − 24

4

)
− 2π

(
2 · 02 − 04

4

)
= 2π (8− 4)− 0 = 8π �
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4. Find the centroid of the region outside the circle x2 + (y + 4)2 = 25 and inside the
circle x2 + y2 = 9. [10]

Solution. Here is a plot of the two circles:

If this seems familiar, this is basically the same picture as for question 1 on Assignment
#2, except that the larger circle has been reflected in the x-axis.

First, since the region in question (the lune inside the smaller circle and outside the
larger one) is symmetric about the y-axis, the centroid must be on the y-axis, i.e. x = 0.

Second, the “mass”, i.e. area, of the lune is the same as the area of the (symmetric)

lune in question 1 of Assignment #2, namely M = 2 +
9π

2
− 25 arcsin

(
3

5

)
≈ 10.0497.

(Recall that we may use the handouts in this course, which includes the solutions to
Assignment #2.)

Third, we need to compute the moment of the region about the x-axis, denoted in

the textbook by Mx. By definition, Mx =
∫ 3

0
y · [length of the cross-section at y] dy. Our

problem is that the cross-sections of the region for 0 ≤ y ≤ 1 come in two pieces and the
cross-sections for 1 ≤ y ≤ 3 come in one piece. This means that we have to break up the
integral into two pieces.

Mx =

∫ 3

0

y · [length of the cross-section at y] dy

=

∫ 1

0

y ·
[(
−
√

25− (y + 4)2 −
(
−
√

9− y2
))

+
(√

9− y2 −
√

25− (y + 4)2
)]

dy

+

∫ 3

1

y ·
[√

9− y2 −
(
−
√

9− y2
)]

dy

=

∫ 1

0

y · 2
[√

9− y2 −
√

25− (y + 4)2
]
dy +

∫ 3

1

y · 2
√

9− y2 dy

=

∫ 1

0

2y
√

9− y2 dy −
∫ 1

0

2y
√

25− (y + 4)2 dy +

∫ 3

1

2y
√

9− y2 dy

=

∫ 3

0

2y
√

9− y2 dy −
∫ 1

0

2y
√

25− (y + 4)2 dy

7



In the first of the two integrals remaining we will use the substitution u = 9 − y2, so

du = −2y dy and 2y dy = (−1) du, and change the variables as we go along:
y 0 3
u 9 0

This

gives:

∫ 3

0

2y
√

9− y2 dy =

∫ 0

9

√
u (−1) du =

∫ 9

0

u1/2 du =
2

3
u3/2

∣∣∣∣9
0

=
2

3
93/2 − 2

3
03/2 =

2

3
· 27− 0 = 18

In the second of the two integrals we will first use the substitution w = y + 4, so dw = dy

and y = w − 4, and change the limits as we go along:
y 0 1
w 4 5

. This gives:

∫ 1

0

2y
√

25− (y + 4)2 dy =

∫ 5

4

2(w − 4)
√

25− w2 dw

=

∫ 5

4

2w
√

25− w2 dw −
∫ 5

4

8
√

25− w2 dw

For the first of these we will use the substitution s = 25 − w2, so ds = −2w dw and

2w dw = (−1) ds, and change the variables as we go along,
w 4 5
s 9 0

. For the second we

will use the trigonometric substitution w = 5 sin(θ), so dw = 5 cos(θ) dθ, but keep the
limits and substitute back before evaluating. Thus:

∫ 1

0

2y
√

25− (y + 4)2 dy =

∫ 5

4

2w
√

25− w2 dw −
∫ 5

4

8
√

25− w2 dw

=

∫ 0

9

√
s (−1) ds− 8

∫ w=5

w=4

√
25− 25 sin2(θ) 5 cos(θ) dθ

=

∫ 9

0

s1/2 ds− 8

∫ w=5

w=4

25 cos2(θ) dθ

We will use the reduction formula for integrating powers of cos(θ) to deal with the latter
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integral.∫ 1

0

2y
√

25− (y + 4)2 dy =

∫ 9

0

s1/2 ds− 8

∫ w=5

w=4

25 cos2(θ) dθ

=
2

3
s3/2

∣∣∣∣9
0

− 200

[
1

2
cos2−1(θ) sin(θ) +

1

2

∫
cos2−2(θ) dθ

]w=5

w=4

=
2

3
93/2 − 2

3
03/2 − 200

[
1

2
cos(θ) sin(θ) +

1

2

∫
1 dθ

]w=5

w=4

=
2

3
· 27− 0− 200

[
1

2
cos(θ) sin(θ) +

1

2
θ

]w=5

w=4

= 18−

[
100

w

5

√
1− w2

25
+ 100 arcsin

(w
5

)]5
4

= 18−
[
4w
√

25− w2 + 100 arcsin
(w

5

)]5
4

= 18− [(4 · 5 · 0 + 100 arcsin(1))− (4 · 4 · 3 + 100 arcsin(0.8))]

≈ 18−
[(

0 + 100
π

2

)
− (48 + 100 · 0.927295)

]
≈ 18− [157.0796− 140.7295] ≈ 18− 16.3501 ≈ 1.6499

It follows that:

Mx =

∫ 3

0

2y
√

9− y2 dy −
∫ 1

0

2y
√

25− (y + 4)2 dy ≈ 18− 1.6499 ≈ 16.3501

Fourth, by definition, y =
Mx

M
≈ 16.3501

10.0497
≈ 1.6269.

Thus the centroid of the region is at (x, y) ≈ (0, 1.6269). Whew! �
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5. Find the area of the surface obtained by revolving the curve y = 4−x2, for 0 ≤ x ≤ 2,
about the y-axis. [10]

Solution. The sketch used in the solution to 3 works here too, so here it is again:

We will plug y = 4 − x2, for 0 ≤ x ≤ 2, into the formula for surface area,

∫ b

a

2πrds,

and integrate away.

Since
dy

dx
=

d

dx

(
4− x2

)
= −2x, we have

ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + (−2x)2 =
√

1 + 4x2 dx ,

and since we are revolving about the y-axis, the point at (x, y) on the curve is revolved on
a circle of radius r = x−0 = x. Thus the surface area of the resulting surface of revolution

is given by

∫ 2

0

2πx
√

1 + 4x2 dx.

We will use the substitution u = 1 + 4x2, so du = 8x dx and hence 2x dx =
1

4
du, and

change the limits as we go along:
x 0 2
u 1 17

SA =

∫ 2

0

2πx
√

1 + 4x2 dx =

∫ 17

1

π
√
u

1

4
dx =

π

4

∫ 17

1

u1/2 du

=
π

4
· 2

3
u3/2

∣∣∣∣17
1

=
π

6
173/2 − π

6
13/2 =

π

6

(
17
√

17− 1
)

Not a pretty answer, but there it is . . . �
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Part III. Do any two (2) of 6 – 8. [20 = 2×10 each]

6. Find the radius and interval of convergence of the power series

∞∑
n=0

x2n

(2n)!
. What

function is it the Taylor series of? [10]

Solution. As usual, we use the Ratio Test to find the radius of convergence.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
x2(n+1)

((2(n+1))!

x2n

(2n)!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x2n+2

(2n+ 2)!
· (2n)!

x2n

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2

(2n+ 2)(2n+ 1)

∣∣∣∣
= lim
n→∞

x2

(2n+ 2)(2n+ 1)

→ x2

→∞ = 0

Since 0 < 1, the Ratio Test tells us that the given series converges absolutely for all x, i.e.
the radius of convergence is r =∞ and so its interval of convergence is (−∞,∞).

Now, what is the function f(x) which has the given series as its Taylor series? (At
x = 0, obviously.) The given series is

∞∑
n=0

x2n

(2n)!
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · ,

which looks somewhat like the Taylor series of ex, which we have seen before, namely

∞∑
k=0

xk

k!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · .

In fact the given series consists of exactly the even-numbered terms of the Taylor series of
ex. So one could guess that our unknown function f(x) is somehow related to ex.

We have seen several functions closely related to ex – as in made from it – in this
course. The one we have seen most frequently in various examples and questions is e−x.
It’s Taylor series at 0 is just the Taylor series of ex with −x = (−1)x plugged in for x:

∞∑
k=0

(−1)kxk

k!
= 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
− · · ·

This is just the alternating version of the Taylor series of ex. Notice that all the even-
numbered terms are positive and the odd-numbered terms are negative. This means that
when we add the series for ex and e−x together, the odd-numbered terms will cancel out
and the even-numbered will add to themselves:( ∞∑

k=0

xk

k!

)
+

( ∞∑
k=0

(−1)kxk

k!

)
= 1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

+ 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
− · · · = 2 + 2

x2

2!
+ 2

x4

4!
+ · · ·

= 2
∞∑
n=0

x2n

(2n)!
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Dividing by 2, we can summarize this as
∞∑
n=0

x2n

(2n)!
=

1

2

[( ∞∑
k=0

xk

k!

)
+

( ∞∑
k=0

(−1)kxk

k!

)]
.

Since the right-hand side must be the Taylor series of
ex + e−x

2
at 0, so is the left-hand

side. We have seen the function
ex + e−x

2
by the name of cosh(x) a time or three.

Thus the given series,

∞∑
n=0

x2n

(2n)!
, is the Taylor series at 0 of cosh(x) =

ex + e−x

2
. �

7. Suppose p(x) = a0 + a1x + a2x
2 + · · · + akx

k is a polynomial of degree k. Find the
Taylor series of p(x), and find its radius and interval of convergence. [10]

Solution. Our polynomial can be thought of as a power series in a pretty easy way:

p(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k

= a0 + a1x+ a2x
2 + · · ·+ akx

k + 0xk+1 + 0xk+2 + · · ·

= a0 + a1x+ a2x
2 + · · ·+ akx

k +
∞∑

n=k+1

0xn ,

Since a function equal to a power series has that power series as its Taylor series, it follows

that p(x) = a0 +a1x+a2x
2 + · · ·+akx

k +
∞∑

n=k+1

0xn is its own Taylor series at 0. Because

any polynomial p(x) is defined (and continuous, and differentiable, and integrable :-) for
all x, it has radius of convergence r =∞ and interval of convergence (−∞,∞). �

8. Use the Taylor series of the three functions involved to show that eix = cos(x)+i sin(x),
where i2 = −1, i.e. i =

√
−1. [10]

Solution. The Taylor series at 0 of ex, cos(x), and sin(s) are
∞∑
k=0

xk

k!
,
∞∑
n=0

(−1)nx2n

(2n)!
, and

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, respectively. (You have probably seen these before, but they’re pretty

easy to work out using Taylor’s formula if you haven’t.) All three series converge for all
x and, like most reasonable functions, converge to the functions that they are the Taylor
series of.

Note that because i2 = −1, we have i3 = −i, i4 = (−1)2 = 1, i5 = i, i6 = −1, i7 = −i,
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and so on. It follows that:

eix =
∞∑
k=0

(ix)k

k!
= 1 +

ix

1!
+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+ · · ·

= 1 + i
x

1!
− x2

2!
− ix

3

3!
+
x4

4!
+ i

x5

5!
− x6

6!
− ix

7

7!
+
x8

8!
+ i

x9

9!
− · · ·

=

(
1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
+ i

(
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
=

( ∞∑
n=0

(−1)nx2n

(2n)!

)
+ i

( ∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

)
= cos(x) + i sin(x) �

[Total = 80]

Part IV. Bonus! If you want to, do one or both of the following problems.

41. Write a poem touching on calculus or mathematics in general. [1]

Solution. You’re on your own here! �

42. Answer the riddle below, which supposedly gives the length of the Hellenistic mathe-
matician Diophantus of Alexandria’s life. [1]

Solution. The answer is 84. Not because it’s the answer to life, the universe, and
everything, twice over . . . :-) �

Thank you all for bearing with the course
under difficult circumstances. It has been

both a pleasure and an honour to teach you.
May you and yours be well and safe, and

may we see each other again in better times.
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