
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2020

Assignment #5.1 – the Maple-less edition
Guaranteeing Convergence
Due on Thursday, 26 March.

Instructions: You may do one of Assignment #5.1 and the original Assignment #5.
Either way, please submit your solutions on or by the due date using the assignment
submission tool on Blackboard, preferably as a pdf. If that doesn’t work, please email it
to your instructor.
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for all k ≥ m and explain why it’s guaranteed. [3]
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2. Find a value ofm such that
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for all k ≥ m and explain why it’s guaranteed. [3]
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π

4
. (To see why, do a little algebra to

answer question 3.)

3. How are these two series adding up to
π

4
related, besides having the same sum? [4]


