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Trent University, Winter 2019

MATH 1120H Test
Friday, 1 March

Time: 11:00–11:50
Space: GCS 114

Name: Solutions

Student Number: 7481011

Question Mark

1
2
3

Total /30

Instructions
• Show all your work. Legibly, please! Simplify where you reasonably can.
• If you have a question, ask it!
• Use the back sides of all the pages for rough work or extra space.
• You may use a calculator and (all sides of) an aid sheet.
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1. Compute any four (4) of integrals a–f. [12 = 4 × 3 each]

a.

∫ π/2

0

cos(x) sin3(x) dx b.

∫ ∞
2

1

y3
dy c.

∫
ez cos(z) dz

d.

∫
5

t2 + t− 6
dt e.

∫
1√

1− 9s2
ds f.

∫ 1

0

r + 1

r2 + 1
dr

Solutions. a. We will use the substitution u = sin(x), so du = cos(x) dx, and change

the limits as we go along:
x 0 π/2
u 0 1∫ π/2

0

cos(x) sin3(x) dx =

∫ 1

0

u3 du =
u4

4

∣∣∣∣1
0

=
14

4
− 04

4
=

1

4
�

b. This is an improper integral, so there is a limit:∫ ∞
2

1

y3
dy = lim

t→∞

∫ t

2

y−3 dy = lim
t→∞

y−2

−2

∣∣∣∣t
2

= lim
t→∞

−1

2y2

∣∣∣∣t
2

= lim
t→∞

(
−1

2t2
− −1

2(−2)2

)
= 0− −1

8
=

1

8
�

c. We will use integration by parts twice and then solve for the integral. The first time
the parts will be u = ez and v′ = cos(z), so u′ = ez and v = sin(z); the second time they
will be s = ez and t′ = sin(z), so s′ = ez and t = − cos(z).∫

ez cos(z) dz = ez sin(z)−
∫
ez sin(z) dz

= ez sin(z)−
[
ez (− cos(z))−

∫
ez (− cos(z)) dz

]
= ez sin(z) + ez cos(z)−

∫
ez cos(z) dz

=⇒ 2

∫
ez cos(z) dz = ez sin(z) + ez cos(z) = ez (sin(z) + cos(z))

=⇒
∫
ez cos(z) dz =

1

2
ez (sin(z) + cos(z)) + C �

d. First, observe that the degree of the numerator in
5

t2 + t− 6
is less than the degree of

the denominator, so there is no need to do long division.
Second, we factor the denominator: t2 + t− 6 = (t− 2)(t+ 3). If one didn’t just spot

this, it is easy enough to find the roots of t2 + t− 6 = 0 using the quadratic formula:

t =
−1±

√
12 − 4 · 1 · (−6)

2 · 1
=
−1±

√
25

2
=
−1± 5

2
=

{ −1+5
2

−1−5
2

=

{
2

−3
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It then follows that t2 + t− 6 = (t− 2) (t− (−3)) = (t− 2)(t+ 3).

Third, it follows that
5

t2 + t− 6
=

A

t− 2
+

B

t+ 3
for some unknown constants A and

B. Comparing coefficients in the numerators in

5

t2 + t− 6
=

A

t− 2
+

B

t+ 3
=
A(t+ 3) +B(t− 2)

(t− 2)(t+ 3)
=

(A+B)t+ (3A− 2B)

t2 + t− 6

implies that A + B = 0 and 3A − 2B = 5. The first equation tells us that B = −A;
plugging this into the second tells us that 5 = 3A− 2B = 3A− 2(−A) = 5A, so we must

have A = 1 and hence also B = −A = −1. Thus
5

t2 + t− 6
=

1

t− 2
+
−1

t+ 3
.

Finally, we integrate:∫
5

t2 + t− 6
dt =

∫
1

t− 2
dt+

∫
−1

t+ 3
dt

Substitute u = t− 2, so du = dt, and
w = t+ 3, so dw = dt, respectively.

=

∫
1

u
du−

∫
1

w
dw = ln(u)− ln(w) + C

= ln(t− 2)− ln(t+ 3) + C �

e. We will use the substitution s =
u

3
, so ds =

1

3
du, to get rid of that factor of 9, and then

follow up with the trigonometric substitution u = sin(θ), so du = cos(θ) dθ. (Of course,

we could also do this all in one go by substituting s =
1

3
sin(θ), so ds =

1

3
cos(θ) dθ.)∫

1√
1− 9s2

ds =

∫
1√

1− 9u
2

9

· 1

3
du =

1

3

∫
1√

1− u2
du =

1

3

∫
1√

1− sin2(θ)
cos(θ) dθ

=
1

3

∫
cos(θ)√
cos2(θ)

dθ =
1

3

∫
cos(θ)

cos(θ)
dθ =

1

3

∫
1 dθ =

1

3
θ + C

=
1

3
arcsin(u) + C =

1

3
arcsin(3s) + C �

f. Chop up and conquer! In the first piece, we will use the substitution w = r2 + 1, so

dw = 2 dr and thus dr =
1

2
dw.

∫ 1

0

r + 1

r2 + 1
dr =

∫ 1

0

r

r2 + 1
dr +

∫ 1

0

1

r2 + 1
dr =

∫ r=1

r=0

1

w

1

2
dw + arctan(r)|10

= ln (w)|r=1
r=0 + arctan(1)− arctan(0) = ln

(
r2 + 1

)∣∣1
0

+
π

4
− 0

= ln
(
12 + 1

)
− ln

(
02 + 1

)
+
π

4
= ln(2)− ln(1) +

π

4
= ln(2)− 0 +

π

4

= ln(2) +
π

4
�
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2. Do any two (2) of parts a–c. [8 = 2 × 4 each]

a. Use a Right-Hand Rule sum to compute

∫ 4

0

x dx.

b. Find the area of the finite region above y = ex and below y = (e− 1)x+ 1.

c. Find the arc-length of the curve y =
4x

3
, where 0 ≤ x ≤ 3.

Solutions. a. We plug the pieces of the given integral into the Right-Hand Rule formula∫ b

a

f(x) dx = lim
n→∞

b− a
n

∞∑
i=1

f

(
a+ i

b− a
n

)
, using the formula

n∑
i=1

i =
n(n+ 1)

2
along the

way. ∫ 4

0

x dx = lim
n→∞

4− 0

n

n∑
i=1

4 ·
(

0 + i
4− 0

n

)
= lim
n→∞

4

n

∞∑
i=1

4 · i · 4

n

= lim
n→∞

4

n
· 4 · 4

n

n∑
i=1

i = lim
n→∞

64

n2
· n(n+ 1)

2
= lim
n→∞

32 · n+ 1

n

lim
n→∞

32

(
n

n
+

1

n

)
= lim
n→∞

32

(
1 +

1

n

)
= 32(1 + 0) = 32 �

b. Note first that ex = (e − 1)x + 1 when x = 0, since e0 = 1 = (e − 1)0 + 1, and when
x = 1, since e1 = e = e− 1 + 1 = (e− 1)1 + 1, and that ex ≤ (e− 1)x+ 1 for 0 ≤ x ≤ 1.
It follows that the region in question has area given by:

A =

∫ 1

0

((e− 1)x+ 1− ex) dx = (e− 1)
x2

2
+ x− ex

∣∣∣∣1
0

=

[
(e− 1)

12

2
+ 1− e1

]
−
[
(e− 1)

02

2
+ 0− e0

]
=

[
1

2
e− 1

2
+ 1− e

]
− [0− 1] = −1

2
e+

3

2
=

1

2
(3− e) �

c. (With calculus.) We plug the curve into the arc-length formula

∫ b

a

√
1 +

(
dy

dx

)2

dx

and integrate away:

arc-length =

∫ 3

0

√
1 +

(
d

dx

[
4x

3

])2

dx =

∫ 3

0

√
1 +

(
4

3

)2

dx =

∫ 3

0

√
9

9
+

16

9
dx

=

∫ 3

0

√
25

9
dx =

∫ 3

0

5

3
dx =

5

3
x

∣∣∣∣3
0

=
5

3
· 3− 5

3
· 0 = 5− 0 = 5 �

c. (Without calculus.) y =
4x

3
, where 0 ≤ x ≤ 3, is the line segment joining (0, 0) to (3, 4),

and is the hypotenuse of the right triangle whose third vertex is (3, 0). The short sides of
the triangle, from (0, 0) to (0, 3) and from (3, 0) to (3, 4), have lengths 3 and 4, respectively,
so the hypotenuse has length

√
32 + 42 =

√
25 = 5 by the Pythagorean Theorem. �
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3. Do either one (1) of parts a or b. [10]

a. Compute

∫
x4 + x2 + 1

x3 + x
dx.

b. A triangular flat plate of constant thickness and density has its vertices at the
points (0, 0), (0, 4), and (4, 0). Find the coordinates of its centroid. (You may
assume that units have been chosen so that mass per unit area equals 1.)

Solutions. a. First, the degree of the numerator is greater than the degree of the
denominator, so we need to divide the denominator into the numerator as far as we can.
Fortunately, this is pretty easy to do in this case by inspection, x4+x2+1 = x

(
x3 + x

)
+1,

so there is no need to resort to long division. (Not that doing so would take long in this
case.) It follows that

x4 + x2 + 1

x3 + x
=
x
(
x3 + x

)
+ 1

x3 + x
=
x
(
x3 + x

)
x3 + x

+
1

x3 + x
= x+

1

x3 + x
,

and the degree of the numerator in the remaining fraction is indeed less than the degree
of the denominator.

Second, we need to fully factor the denominator x3 + x, which, again fortunately∗, is
easy to do x3 + x = x

(
x2 + 1

)
. The quadratic factor x2 + 1 is obviously never 0 since it

is at least 1 for all x, so it has no roots and hence is an irreducible quadratic.
Third, we need to decompose the remaining fraction into “partial fractions”:

1

x3 + x
=

1

x (x2 + 1)
=
Ax+B

x2 + 1
+
C

x
=

(Ax+B)x+ C
(
x2 + 1

)
x (x2 + 1)

=
(A+ C)x2 +Bx+ C

x (x2 + 1)

Comparing coefficients in the numerators on the left and right ends, we see that we must
have A + C = 0, B = 0, and C = 1. Combining the first and last equations, we see that

A = −C = −1, so
1

x3 + x
=
−x

x2 + 1
+

1

x
.

Finally, we integrate. Along the way, we will use the substitution u = x2 + 1, so
du = 2x dx and thus x dx = 1

2 du.∫
x4 + x2 + 1

x3 + x
dx =

∫ (
x+

1

x3 + x

)
dx =

∫
x dx+

∫
1

x3 + x
dx

=
x2

2
+

∫ (
−x

x2 + 1
+

1

x

)
dx =

x2

2
−
∫

x

x2 + 1
dx+

∫
1

x
dx

=
x2

2
−
∫

1

u
· 1

2
du+ ln(x) =

x2

2
− 1

2
ln(u) + ln(x) + C

=
x2

2
− 1

2
ln
(
x2 + 1

)
+ ln(x) + C �

∗ That is, fortunately for you: this problem was very carefully cooked . . .
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b. Note that the triangular plate is symmetric about the line y = x. Since the centroid
must be on any line of symmetry for a plate of constant thickness and density, the centroid
(x̄, ȳ) of the given plate must have x̄ = ȳ. This means we only need to compute x̄.

We will need to compute the mass of the plate, which boils down to computing its
area since the plate is of uniform density and thickness and we are allowed to assume that
units have been chosen to make mass equal to area. As noted in the diagram above, the
line joining (0, 4) and (4, 0) has equation y = 4−x, so the triangular plate can be thought
of as the region under y = 4− x for 0 ≤ x ≤ 4.

mass = area =

∫ 4

0

(4− x) dx =

(
4x− x2

2

)∣∣∣∣4
0

=

(
4 · 4− 42

2

)
−
(

4 · 0− 02

2

)
=

(
16− 16

2

)
− 0 = 16− 8 = 8

We next need to compute the (first) moment of the plate with respect to x, which
weighs area according to its x-value.

moment =

∫ 4

0

(4− x)x dx =

∫ 4

0

(
4x− x2

)
dx =

(
4 · x

2

2
− x3

3

)∣∣∣∣4
0

=

(
4 · 42

2
− 43

3

)
−
(

4 · 02

2
− 03

3

)
=

(
32− 64

3

)
− 0 =

96

3
− 64

3
=

32

3

By definition, it now follows that x̄ =
moment

mass
=

32/3

8
=

4

3
. As noted at the start,

ȳ = x̄ by symmetry, so the centroid of the plate is at (x̄, ȳ) =

(
4

3
,

4

3

)
. �

[Total = 30]


