Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2019

Solutions to Assignment #4
Surface Area Error

If you look it up, you will find that the surface area of a sphere of radius r is SA = 47r?.
The following calculation comes to a different conclusion.

We will compute the surface area of the sphere by adding up (by integrating) the
perimeters of horizontal cross-sections of the sphere, analogously to how we can [correctly!]
find the volume of a sphere by adding up (by integrating) the areas of horizontal cross
sections of the sphere.

The equation of a sphere of radius r
centred at the origin is x2? + y? + 22 = r2. I
The cross-section of this sphere for a
fixed z with —r < z < r is a circle with
equation z2 + y? = r2 — 22 and hence
radius R(z) = Vr2 — 22 and perimeter
C(z) = 27R(z) = 2mV/r? — z2. Therefore
the surface area of the sphere should be
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This is only true in those universes where m =4 ...
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1. Explain what is wrong in the calculation above. [4/

SOLUTION. Read the solution to question 2 below first. The main difference between it
and the calculation above is in the setup: the computation above does not take arc-length
into account and the solution to 2 below does. A little more generally, the calculation
above does not fully account for the slope of the curve being revolved when computing the
surface area, while the arc-length based calculation does.
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Why does this matter? It matters because the length of a small bit of the curve being
revolved matters: the longer it is, that is, the more dy you have per dx — i.e. the steeper
the slope, the more area it contributes when revolved. (See Figure 9.10.4 in the text, and
the discussion before it on pages 234-235, for a detailed explanation.) The calculation
given above simply doesn’t take this fact into account. [J

2. Use calculus to compute the surface area of a sphere of radius r correctly. [6]

SOLUTION. This is a little easier if we find the surface area of the upper hemisphere of a
sphere of radius r first, and then double it to get the surface area of the entire sphere. The
upper hemisphere of a sphere of radius r can be obtained by revolving the quarter circle
y=+vr?—x2, for 0 < x <r, about the y-axis.

The formula for the surface area of a surface obtained by revolving a curve y = f(x),
a < x < b, about the y-axis — §9.10 of the textbook, on p. 236 —
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In our case f(x) = Vr? — 22, so
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with a = 0 and b = r. It follows that the surface area of the upper hemispher of radius r
is given by:
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Substitute u = r? — 22, so du = —2x d and thus 2z dz = (— )
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Since the surface area of the upper hemisphere is, by symmetry, half the surface area of
the entire sphere, the surface area of the entire sphere is 2 - 2772 = 472, R



