
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2018

Solutions to the Quizzes

Quiz #1. Wednesday, 20 June. [20 minutes]

Compute each of the following integrals.

1.

∫
sec2(x) tan2(x) dx [1] 2.

∫
sec4(x) dx [1.5] 3.

∫
sin2(x) cos2(x) dx [2.5]

Solutions. 1. We’ll use the substitution u = tan(x), in which case
du

dx
= sec2(x) and

du = sec2(x) dx:∫
sec2(x) tan2(x) dx =

∫
u2 du =

u3

3
+ C =

tan3(x)

3
+ C �

2. We’ll use the trigonometeric identity tan2(x) + 1 = sec2(x) followed by the same
subsitution used in the solution to question 1 above:∫

sec4(x) dx =

∫ (
tan2(x) + 1

)
sec2(x) dx =

∫ (
u2 + 1

)
du

=
u3

3
+ u+ C =

tan3(x)

3
+ tan(x) + C �

3. (Using the double angle formulas and a little substitution.) We’ll use the trigonometric
identities sin(2θ) = 2 sin(θ) cos(θ) and cos(2α) = 1−2 sin2(α), with a little bit of rearrang-

ing to give sin(θ) cos(θ) =
1

2
sin(2θ) and sin2(α) =

1

2
(1− cos(2α)), plus the substitution

w = 4x, so dw = 4 dx and dx = 1
4 dw.

∫
sin2(x) cos2(x) dx =

∫
(sin(x) cos(x))

2
dx =

∫ (
1

2
sin(2x)

)2

dx

=
1

4

∫
sin2(2x) dx =

1

4

∫
1

2
(1− cos(4x)) dx

=
1

8

∫
(1− cos(w))

1

4
dw =

1

32
(w − sin(w)) + C

=
1

32
(4x− sin(4x)) + C =

1

32
(4x− 2 sin(2x) cos(2x)) + C

=
1

32

(
4x− 4 sin(x) cos(x)

(
1− 2 sin2(x)

))
+ C

=
1

8

(
x− sin(x) cos(x) + 2 sin3(x) cos(x)

)
+ C

Stopping at
1

32
(4x− sin(4x)) + C would probably be enough for most purposes. �
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3. (Using mainly integration by parts.) We will use integration parts with u = cos(x) and
v′ = sin2(x) cos(x), so u′ = d

dx cos(x) = − sin(x) and

v =

∫
sin2(x) cos(x) dx =

∫
w2 dw =

1

3
w3 =

1

3
sin3(x) ,

the latter calculation using the substitution w = sin(x), so dw = cos(x) dx. It now follows
that:∫

sin2(x) cos2(x) dx = uv −
∫
u′v dx = cos(x) · 1

3
sin3(x)−

∫
(− sin(x)) · 1

3
sin3(x) dx

=
1

3
cos(x) sin3(x) +

1

3

∫
sin4 dx

=
1

3
cos(x) sin3(x) +

1

3

∫
sin2(x)

(
1− cos2(x)

)
dx

=
1

3
cos(x) sin3(x) +

1

3

∫
sin2(x) dx− 1

3

∫
sin2(x) cos( x) dx

A little rearranging gives
4

3

∫
sin2(x) cos2(x) dx =

1

3
cos(x) sin3(x) +

1

3

∫
sin2(x) dx, thus,

using the formula sin2(α) =
1

2
(1− cos(2α)) and the substitution w = 2x (so dw = 2 dx

and dx 1
2 dw):∫

sin2(x) cos2(x) dx =
3

4

[
1

3
cos(x) sin3(x) +

1

3

∫
sin2(x) dx

]
=

1

4
cos(x) sin3(x) +

1

4

∫
sin2(x) dx

=
1

4
cos(x) sin3(x) +

1

4

∫
1

2
(1− cos(2x)) dx

=
1

4
cos(x) sin3(x) +

1

8

∫
(1− cos(w))

1

2
dw

=
1

4
cos(x) sin3(x) +

1

16
(w − sin(w)) + C

=
1

4
cos(x) sin3(x) +

1

16
(2x− sin(2x)) + C

=
1

4
cos(x) sin3(x) +

1

16
(2x− 2 sin(x) cos(x)) + C

=
1

4
cos(x) sin3(x) +

1

8
(x− sin(x) cos(x)) + C

=
1

8

(
2 cos(x) sin2(x) + x− sin(x) cos(x)

)
+ C

. . . which is what we got in the other solution for 3, allowing for a little rearranging. �
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Quiz #2. Monday, 25 June. [12 minutes]

1. Compute

∫
x3√

1− x2
dx. [5]

Solution. (Using a trigonometric substitution.) We see a component that looks like√
1− x2, so will use the trigonometric substitution x = sin(θ), so dx = cos(θ) dθ. (Note

that we then have
√

1− x2 =
√

1− sin2(θ) =
√

cos2(θ) = cos(θ).) To evaluate the

resulting trigonometric integral, we will us the substitution u = cos(θ), so du = − sin(θ) dθ
and (−1) du = sin(θ) dθ.∫

x3√
1− x2

dx =

∫
sin3(θ)√

1− sin2(θ)
cos(θ) dθ =

∫
sin3(θ) cos(θ)√

cos2(θ)
dθ =

∫
sin3(θ) cos(θ)

cos(θ)
dθ

=

∫
sin3(θ) dθ =

∫
sin( θ) sin(θ) dθ =

∫ (
1− cos2(θ)

)
sin(θ) dθ

=

∫ (
1− u2

)
(−1) du =

∫ (
u2 − 1

)
du =

u3

3
− u+ C

=
1

3
cos3(θ)− cos(θ) + C =

1

3

(√
1− x2

)3
−
√

1− x2 + C

=
1

3

(
1− x2

)3/2 − (1− x2)1/2 + C �

Solution. (Using a non-trigonometric substitution.) We will use the substitution w =
1 − x2 to simplify the integral. Then dw = −2x dx, so

(
− 1

2

)
dw = x dx; note also that

x2 = 1− w.∫
x3√

1− x2
dx =

∫
x2√

1− x2
x dx =

∫
1− w√
w

(
−1

2

)
dw = −1

2

∫ (
1√
w
− w√

w

)
dw

= −1

2

∫ (
w−1/2 − w1/2

)
dw =

1

2

∫ (
w1/2 − w−1/2

)
dw

=
1

2

(
w3/2

3/2
− w1/2

1/2

)
+ C =

w3/2

3
− w1/2 + C

=
1

3

(
1− x2

)3/2 − (1− x2)1/2 + C �
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Quiz #3. Wednesday, 20 June. [12 minutes]

1. Compute

∫
12

x3 + 4x
dx. [5]

Solution. First, observe that x3 + 4x = x
(
x2 + 4

)
; moreover, since x2 + 4 ≥ 4 > 0 for

all x, x2 + 4 has no roots and hence is an irreducible quadratic. It follows that

12

x3 + 4x
=

12

x (x2 + 4)
=
A

x
+
Bx+ C

x2 + 4

for some constants A, B, and C.
We need to determine A, B, and C. Since

12

x (x2 + 4)
=
A

x
+
Bx+ C

x2 + 4
=
A
(
x2 + 4

)
+ (Bx+ C)x

x (x2 + 4)
=

(A+B)x2 + Cx+ 4A

x (x2 + 4)
,

we must have (A + B)x2 + Cx + 4A = 12, so that A + B = 0, C = 0, and 4A = 12.
From the last of these we have that A = 12

4 = 3, and it then follows from the first that
B = −A = −3. Thus A = 3, B = −3, and C = 0, and so:∫

12

x3 + 4x
dx =

∫ (
3

x
+
−3x+ 0

x2 + 4

)
dx = 3

∫
1

x
dx− 3

∫
x

x2 + 4
dx

The former integral is easy, but we’ll have to put a bit more effort into the latter.
To compute

∫
x

x2+4 dx, we will use the substitution u = x2 + 4, so that du = 2x dx

and x dx = 1
2 du. Thus:∫

x

x2 + 4
dx =

∫
1

u
· 1

2
du =

1

2
ln(u) + C =

1

2
ln
(
x2 + 4

)
+ C

Putting all the pieces together, we have:∫
12

x3 + 4x
dx = 3

∫
1

x
dx− 3

∫
x

x2 + 4
dx = 3ln(x)− 3

2
ln
(
x2 + 4

)
+ C �
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Quiz #4. Wednesday, 4 July. [12 minutes]

Do one (1) of the following three questions.

1. How big does n have to be to guarantee that the Right-Hand Rule sum for

∫ 2

0

(x+1) dx

is within 0.1 = 1
10 of the exact value of the integral? [5]

2. How big does n have to be to guarantee that the Trapezoid Rule sum for

∫ 2

0

(x+1) dx

is within 0.1 = 1
10 of the exact value of the integral? [5]

3. The game of trigball is played with a double-pointed “ball” that is 10π cm long∗. The
cross-sections perpendicular to the axis of symmetry (which runs from one pointy end
to the other) are circles of radius 10 sin(x) cm, where x is the distance (in cm) that
cross section is from one end of the ball. Find the volume of a trigball. [5]

Solutions. 1. As was worked out in class, if |f ′(x)| ≤ M for all x ∈ [a, b], the Right-

Hand Rule sum b−a
n

∑n
i=1 f

(
a+ i b−an

)
differs from the exact value of

∫ b
a
f(x) dx by at

most M(b−a)2
n . In this case a = 0 and b = 2, while f ′(x) = d

dx (x + 1) = 1 means that
M = 1 will do. It follows that the Right-Hand Rule sum for n in this case differs from

the integral
∫ n
0

(x+ 1) dx by at most 1(2−0)2
n = 4

n . In order to have the sum be guaranteed

to be within 0.1 of the integral, we therefore have to ensure that 4
n ≤ 0.1, that is, that

40 = 4
0.1 ≤ n. �

Note: Neither in 1, nor in 2, were you actually asked to compute the relevant sum.

2. As is noted in the textbook (see Theorem 8.6.1 in §8.6), if |f ′′(x)| ≤M for all x in the
interval [a, b], the Trapezoid Rule sum for n differs from the integral it approximates by

at most M(b−a)3
12n2 . In this case a = 0 and b = 2, while f ′′(x) = d2

dx2 (x + 1) = d
dx1 = 0, so

M = 0 will do. This means that the Trapezoid Rule sum for any n ≥ 1 will differ from

the integral by at most 0(2−0)3
12n2 = 0. That is, the Trapezoid Rule sum will give the exact

answer no matter what n ≥ 1 is for this integral. (Why?) �

3. To compute the volume of a solid, we integrate the area function of the cross-sections
of the solid. In this case, the area of the circular cross-section at x, for 0 ≤ x ≤ 10π, is
πr2 = π (10 sin(x))

2
= 100π sin2(x) (in cm2, since r = 10 sin(x) is in cm). Now:

V =

∫ 10π

0

100π sin2(x) dx = 100π

∫ 10π

0

1

2
(1− cos(2x)) dx

Substitute u = 2x, so
du = 2 dx and dx = 1

2 du,

with
x 0 10π
u 0 20π

.

=
100π

2

∫ 20π

0

(1− cos(u))
1

2
du =

100π

4

∫ 20π

0

(1− cos(u)) du = 25π (u− sin(u))|20π0

= 25π (20π − sin(20π))− 25π (0− sin(0)) = 25π (20π − 0)− 25π(0− 0) = 500π

Thus the volume of a trigball is 500π cm3. �

∗ The points are sharp. Please be careful when playing with a trigball.
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Quiz #5. Wednesday, 11 July. [10 minutes]

1. Find the arc-length of y =
2

3
x3/2 for 0 ≤ x ≤ 3. [5]

Solution.
dy

dx
=

d

dx

(
2

3
x3/2

)
=

2

3
· 3

2
x1/2 = x1/2. We will plug this into the integration

formula for arc-length. In computing the resulting integral we will use the substitution

u = x+ 1, so du = dx and
x 0 3
u 1 4

.

Arc-length =

∫ 3

0

√
1 +

(
dy

dx

)2

dx =

∫ 3

0

√
1 +

(
x1/2

)2
dx =

∫ 3

0

√
1 + x dx =

∫ 4

1

√
u du

=

∫ 4

1

u1/2 du =
u3/2

3/2

∣∣∣∣4
1

=
2

3
· 43/2 − 2

3
· 13/2 =

2

3
· 8− 2

3
=

2

3
· 7 =

14

3
�

Quiz #6. Monday, 16 July. [15 minutes]

Find the limit of each of the following sequences, if it exists. If the limit does not
exist, give an informal explanation for why it doesn’t.

1. an = (−1)n [1] 2. bn =
n

n2 + 1
[1] 3. cn = arctan(n) [1] 4. dn =

n!

2n
[2]

Solutions. 1. lim
n→∞

(−1)n does not exist. If you start with n = 0, the sequence is

1, −1, 1, −1, 1, −1, . . . This fails to have a limit because it is not true that it gets close
to one, and only one, real number. �

2. A little algebra goes a long way here:

lim
n→∞

n

n2 + 1
= lim
n→∞

n

n2 + 1
·

1
n
1
n

= lim
n→∞

n
n

n2+1
n

= lim
n→∞

1

n+ 1
n

= 0

since n+
1

n
→∞+ 0 =∞ as n→∞. �

3. lim
n→∞

arctan(n) = lim
x→∞

arctan(x) =
π

2
since y = arctan(x) has a horizontal asyptote of

y =
π

2
as x→∞. �

4. This limit fails to exist; in fact, lim
n→∞

n!

2n
=∞. The first five terms of the sequence are

a0 = 0!
20 = 1

1 = 1, a1 = 1!
21 = 1

2 , a2 = 2!
22 = 2

4 = 1
2 , a3 = 3!

23 = 6
8 = 3

4 , and a4 = 4!
24 = 24

16 = 3
2 .

After this point, an > 1 because if an−1 > 1 and n ≥ 5, then an = an−1 ·
n

2
> 1· 5

2
=

5

2
> 1.

Moreover, this same comparison hows that an = an−1 ·
n

2
>
n

2
. Since lim

n→∞

n

2
= ∞, we

must then have lim
n→∞

an = lim
n→∞

n!

2n
=∞. �
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Quiz #7. Wednesday, 18 July. [20 minutes]

Determine whether each of the following series converges or not.

1.

∞∑
n=0

2n−1

en+1
[1] 2.

∞∑
n=2

1

n2 − 1
[1] 3.

∞∑
n=0

n√
n2 + 1

[1.5] 4.

∞∑
n=0

cos(n)

nln (2n + 1)
[1.5]

Solutions. 1. Observe that
∞∑
n=0

2n−1

en+1
=
∞∑
n=0

1

2e

(
2

e

)n
is a geometric series with first term

a =
1

2e
and common ratio r =

2

e
. Since 2 < e ≈ 2.718, the common ratio |r| = 2

e
< 1, so

the series converges. �

2.
∞∑
n=2

1

n2 − 1
is a series where each term is a rational function in n. Considered as a

polynomial in n, the numerator 1 has degree 0, while the denominator n2 − 1 has degree
2. Since p = 2− 0 = 2 > 1 for this series, the p-Test implies that the series converges. �

3. Note that

lim
n→∞

n√
n2 + 1

= lim
n→∞

n√
n2 + 1

·
1
n
1
n

= lim
n→∞

n
n√

1
n2 (n2 + 1)

= lim
n→∞

1√
1 + 1

n2

=
1√

1 + 0
= 1

because
1

n2
→ 0 as n → ∞. Since lim

n→∞

n√
n2 + 1

= 1 6= 0, it follows by the Divergence

Test that the series

∞∑
n=0

n√
n2 + 1

diverges. �

4. Whenever n ≥ 1, we have

0 ≤
∣∣∣∣ cos(n)

nln (2n + 1)

∣∣∣∣ ≤ 1

nln (2n)
≤ 1

n · nln(2)
=

1

ln(2)
· 1

n2
,

so the series
∞∑
n=1

∣∣∣∣ cos(n)

nln (2n + 1)

∣∣∣∣ converges by comparison with the series
∞∑
n=1

1

ln(2)
· 1

n2
, which

converges by the p-Test since it has p = 2− 0 = 2 > 1. Thus the series
∞∑
n=0

cos(n)

nln (2n + 1)
is

absolutely convergent, which means it’s convergent. �
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Quiz #8. Monday, 23 July. [20 minutes]

Determine whether each of the following series converges or not.

1.

∞∑
n=0

4n + 1

5n + 2
[1] 2.

∞∑
n=1

[
ln
(
e−1/n

)]n
[2] 3.

∞∑
n=2

(
7

n

)n
[2]

Solutions. 1. Looking at the dominant terms in
4n + 1

5n + 2
, it’s a pretty good bet that the

series should behave similarly to
∞∑
n=0

4n

5n
. As

lim
n→∞

4n+1
5n+2
4n

5n

= lim
n→∞

4n + 1

5n + 2
· 5n

4n
= lim
n→∞

4n + 1

5n + 2
·

1
4n

1
5n

= lim
n→∞

1 + 1
4n

1 + 2
5n

=
1 + 0

1 + 0
= 1,

it follows by the Limit Comparison Test that
∞∑
n=0

4n + 1

5n + 2
converges or diverges exactly as

∞∑
n=0

4n

5n
does. Since

∞∑
n=0

4n

5n
=
∞∑
n=0

(
4

5

)n
is a geometric series with first term a = 1 and

common ratio r =
4

5
, and |r| = 4

5
< 1, it converges. Thus

∞∑
n=0

4n + 1

5n + 2
also converges. �

2.

∞∑
n=1

[
ln
(
e−1/n

)]n
=

∞∑
n=1

[
−1

n
ln (e)

]n
=

∞∑
n=1

(−1)n

nn
is obviously an alternating series.

The underlying sequence of positive terms is decreasing, as n + 1 > n implies that (n +

1)n+1 > (n + 1)n > nn, which implies that
1

(n+ 1)n+1
<

1

nn
. Moreover, since nn → ∞

(very fast!) as n → ∞, we have that lim
n→∞

1

nn
= 0. It now follows by the Alternating

Series Test that
∞∑
n=1

[
ln
(
e−1/n

)]n
converges. (Alternatively, it’s not hard to show that

it converges absolutely, by an argument similar to that used in the solution to question 3
below, and hence converges.) �

3. Note that for all n ≥ 41∗, we have 41n < nn, so 0 <

(
7

n

)n
<

(
7

41

)n
.
∞∑
n=2

(
7

41

)n
is a geometric series with first term a =

72

412
and common ratio r =

7

41
, which converges

because |r| =
7

41
< 1. It now follows by the (Basic) Comparison Test that

∞∑
n=2

(
7

n

)n
converges as well. �

∗ I used 41 because it’s my favourite integer. Any real number greater than 7 would do just as well
in this argument.
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Quiz #9. Wednesday, 25 July. [20 minutes]

Find the radius and interval of convergence of each of the following power series.

1.
∞∑
n=1

xn

nn
[1.5] 2.

∞∑
n=0

5n+1

2n
xn [1.5] 3.

∞∑
n=0

n+ 3

2n+ 1
xn [2]

Solutions. 1. We will use the Root Test to find the radius of convergence. Since

lim
n→∞

|an|1/n = lim
n→∞

∣∣∣∣xnnn
∣∣∣∣1/n = lim

n→∞

[(
|x|
n

)n]1/n
= lim
n→∞

|x|
n

= 0 < 1

for all x ∈ R, it follows by the Root Test that

∞∑
n=1

xn

nn
converges for all x, and hence the

radius of convergence of this series is ∞ and its interval of convergence is (−∞,∞). �

2. We will use the fact that

∞∑
n=0

5n+1

2n
xn is a geometric series with common ratio r =

5x

2
.

This means that it converges exactly when |r| =

∣∣∣∣5x2
∣∣∣∣ < 1, i.e. when |x| < 2

5
. It follows

that the radius of convergence is
2

5
and the interval of convergence is

(
−2

5
,

2

5

)
. �

3. We will use the Ratio Test to find the radius of convergence. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(n+1)+3
2(n+1)+1x

n+1

n+3
2n+1x

n

∣∣∣∣∣∣ = lim
n→∞

(n+ 4)|x|n+1

2n+ 3
· 2n+ 1

(n+ 3)|x|n

= lim
n→∞

2n2 + 9n+ 4

2n2 + 9n+ 9
|x| = |x| lim

n→∞

2n2 + 9n+ 4

2n2 + 9n+ 9
· 1/n2

1/n2

= |x| lim
n→∞

2 + 9
n + 1

n2

2 + 9
n + 9

n2

= |x| · 2 + 0 + 0

2 + 0 + 0
= |x| ,

the Ratio Test tells us that the series converges for all x with |x| < 1 and diverges for all
x with |x| > 1. Thus the radius of convergence of this series is 1.

To find the interval of convergence, we need to determine what happens at the end-

points, x = −1 and x = 1. When x = −1 we have the series
∞∑
n=0

n+ 3

2n+ 1
(−1)n, which fails

the Divergence Test. Since

lim
n→∞

∣∣∣∣ n+ 3

2n+ 1
(−1)n

∣∣∣∣ = lim
n→∞

n+ 3

2n+ 1
= lim
n→∞

n+ 3

2n+ 1
· 1/n

1/n
= lim
n→∞

1 + 3
n

2 + 1
n

=
1 + 0

2 + 0
=

1

2
6= 0 ,

it cannot be true that lim
n→∞

n+ 3

2n+ 1
(−1)n0. Thus, by the Divergence Test,

∞∑
m=0

n+ 3

2n+ 1
(−1)n

does not converge. Similarly, when x = 1, we have the series

∞∑
n=0

n+ 3

2n+ 1
1n =

∞∑
n=0

n+ 3

2n+ 1
,

which also fails the Divergence Test by the limit computed above. It follows that the
interval of convergence of the given power series is (−1, 1). �
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