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Chapter 1

Introduction

1.1 SageMath

Welcome to SageMath! This tutorial manual is intended as a supplement to Rogawski’s Calculus

textbook and aimed at students looking to quickly learn Sage through examples. It also includes

a brief summary of each calculus topic to emphasize important concepts. Students should refer to

their textbook for a further explanation of each topic.

1.1.1 Creating an Account

SageMath is a powerful computer algebra system (CAS) whose capabilities and features can be

overwhelming for new users. Thus, to make your experience in using Sage as easy as possible,

we recommend that you read this introductory chapter carefully. We will discuss basic syntax and

frequently used commands.

There are two ways to use Sage, you can run Sage on it server (cloud) or install Sage and run it

on your computer:

SageMath Cloud: To use SageMath on the cloud, go to www.cloud.sagemath.com and create

an account. After logging in, you will see all of your projects will be listed. Since it’s the first time,

click on NewProject . . . to create one. Give the project a name and click on CreateProject. Your

7



8 CHAPTER 1. INTRODUCTION

project now is created and listed under ShowingProject. For example, I have create a new project

name "Testing Sage Manual" among other projects. The screen will look like this:

Click on the project you want to work on, click Create or upload files...

where we can create a file of upload a file from our computer. Since we want to run Sage on cloud,

we create a new file name StartingWithSage, and select the type as SageMath Worksheet



1.1. SAGEMATH 9

We are now in a Sage file and ready to use it. Pay attention that we are now viewing the file

StartingWithSage.sagews located inside of the Testing Sage Manual project.

Localhost: The other way to run Sage is to download it and install it on your computer. Go to

www.sagemath.org/download and download Sage package. Install it and restart you computer.

Now run Sage (double click on its icon), Sage will automatically open up your brownser

and your Sage notebook on your localhost, displayed all worksheets that you have been working

on



10 CHAPTER 1. INTRODUCTION

Click on any worksheet that you want to continue work with or create a new worksheet. To create

a new worksheet, click on New Worksheet, give it a name a click on Rename. For example, let

create a new worksheet called SageExample

Each horizontal rectangle is called a cell. Click on that and you are now ready to start learning

Sage.
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1.1.2 Getting Started

Just start typing input commands (a cell formatted as an input box will be automatically created).

For example, type 4+6. To evaluate this command or any other command(s) contained inside an

input box, simultaneously press SHIFT+ENTER, that is, the keys SHIFT and ENTER at the same

time (or click on the evaluate button if you are on localhost or run button if you on the cloud). Be

sure your mouse’s cursor is positioned inside the input box or else select the input box(es) that you

want to evaluate. This is how it looks like on localhost:

And on SageMath cloud:
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Notice there is a slightly different between them.

1.1.3 Help Menu

SageMath provides an online help menu to answer many of your questions about the program.

One can search for a particular command expression in the Help menu located at the right top

conner.

For ony a brief description of plot, just evaluate plot?
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1.1.4 Sharing Sage Files

SageMath Cloud not only lets you work anywhere as long as you have an Internet connection, but

also allow you to share your file/project with your instructor or colleague. The only requirement is

that the one who you want to share Sage files with should also have an account. Once he/she has

it, you can give his/her permission to access your file. Notice that they have permission to access

a particular file you choose, not every files you have in your account.

Once you sign in, click on the project (under ShowingProject) that you want to share, then click

on setting. In Collaborators section, enter name or email address of your instructor or colleague,

a list of matching will show up. Choose the one you look for and click on Add selected. That

person will received an invitation email and now he/she can modify anything on that project. You

and your instructor now can make a conversation or video call through the window of that project.

1.2 Sage Commands

1.2.1 Naming

Built-in Sage commands, functions, constants, and other expressions begin with lowercase letters

and are (for the most part) one or more full-length English words (without capitalized). Further-

more, Sage is case sensitive. For example, plot, expand, print and show are valid function names.

sin, def, gcd and max are some of the standard mathematical abbreviations that are exceptions to

the full-length English word(s) rule.

User-defined functions and variables can be any mixture of uppercase and lowercase letter and

number. However, a name cannot begin with a number. User-defined functions may begin with a

upper case letter, but this is not requires. For example, F1, g1, myPlot, Sol and Tech are permis-

sible function names.
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1.2.2 Delimiters

Sage interprets various types of delimiters (brackets) differently.

• Parentheses, (): When there are multiple sets of parentheses in a formula, sometime math-

ematicians use brackets as a type of "strong parentheses". As it turns out, Sage needs the

brackets for other things, like list or table, so you have to always use parentheses for group-

ing inside of formulas.

• Square brackets, []: It is used to construct a data structure with group of value such as a list

or table.

1.2.3 Lists, Tables, and Arrays

Lists:

A list (or string) of elements can be defined in Sage as [e1,e2, ...,en]. For example, the following

command defines v= [1,3,5,7,9] to be the list (set) of the first five odd positive integers.

1sage: v=[1,3,5,7,9]

2sage: v

3[1, 3, 5, 7, 9]

To refer to the kth element in a list name expr, just evaluate expr[k]. For example, to refer to the

third element in v, we evaluate

4sage: v[3]

57

It is also possible to define nested lists whose elements are themselves lists, call sublists. Each

sublist contains subelements. For example, the list w = [[1,3,5,7,9], [2,4,6,8,10]] contains two

elements, each of which is a list (first five odd and even positive integers.)
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6sage: w=[[1,3,5,7,9],[2,4,6,8,10]]

7sage: w

8[[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]

To refer to the kth subelement in the jth sublist of expr, just evaluate expr[j][k]. For example, to

refer to the fourth subelement in the second sublist of w (or 8), we evaluate

9sage: w[1][3]

108

Tables:

A table is used to display a rectangular array or list as a table.

table(list)

For example, the following command displays v in a table.

11sage: v=[[’a’,’b’,’c,’],[1,2,3],[4,5,6]]

12sage: table(v)

13a b c,

141 2 3

154 5 6

To highlight first row or first column, we set header−row = True or header−column = True,

respectively. To put a box around each cell, set frame = True. Also, by default, align is ’left’, we

can change it to ’center’ or ’right’. For example, let highlight the first row of the table of v, put a

box around it, and align it center.

16sage: table(v,header_row=True , frame=True , align=’center ’)

17+---+---+----+

18| a | b | c, |

19+===+===+====+
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20| 1 | 2 | 3 |

21+---+---+----+

22| 4 | 5 | 6 |

23+---+---+----+

We can also use a loop inside table to create a table:

table([(x,f(x)) for x in [0..b]])

where b is number of counters or steps of x.

24sage: table ([(i,2*i) for i in [0..3]] , frame=True)

25+---+---+

26| 0 | 0 |

27+---+---+

28| 1 | 2 |

29+---+---+

30| 2 | 4 |

31+---+---+

32| 3 | 6 |

33+---+---+

Arrays:

Arrays are created using NumPy, that means you have to make numpy commands available in

sage. You must first do: import numpy.

The following code will create an array called ArrayEx that contains the first 5 positive integers:

34sage: import numpy

35sage: ArrayEx=numpy.array ([1,2,3,4,5])

36sage: ArrayEx

37[1 2 3 4 5]
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To create a multiple array with the shape of 3x2 with the first column contains the first 3 integer

and the second column contains double values of first column:

38sage: import numpy

39sage: ArrayMul=numpy.array ([[j,2*j] for j in range (3)])

40sage: ArrayMul

41[[0 0]

42[1 2]

43[2 4]]

To refer to the kth subelement in the jth subarrays of Array, just evaluate Array[j][k]. For exam-

ple, to refer to the second subelement in the third subarray of ArrayMul, we evaluate

44sage: ArrayMul [2][1]

454

Notice that the index starts from 0.

1.2.4 Commenting

One can insert comments on any input line. The comments should be follow by # sign. For

example,

46sage: # This command plot the graph of $sin$ function in red

color

47sage: g=plot(sin(x),x,-3,3,figsize=3,color=’red’)
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-3 -2 -1 1 2 3

-1

-0.5

0.5

1

1.3 Algebra

1.3.1 Solving Equations

Sage uses the stand sysbols +,−,∗,/,, ! for addition, subtraction, multiplication, division, raising

powers (exponents), and factorials, respectively. Unlike other program, multiplication can only be

performed by ∗ between factors.

To generate numerical output in decimal form, use the command n(expr,digits = 3) to display

to 3 decimal places.

NOTE: Sage can perform calculations to arbitrary precision and handle numbers that are arbitrar-

ily large or small.

48sage: pi

49pi

50sage: n(pi,digits =4)

513.142

52sage: n(pi,digits =20)

533.1415926535897932385

54sage: 6^(5^2)

5528430288029929701376

56sage: factorial (5)
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57120

Here are Sage rules regarding the use of equal signs:

1) A single equal sign (=) assigns a value to a variable. Thus, entering x= 3 means that x will be

assigned the value 3.

58sage: z=3

59sage: z

603

If we then evaluate 5+z3, Sage will return 32

61sage: 5+z^3

6232

2) A double-equal sign (==) is a test of equality between two expressions. Since we previously

set x= 2, then evaluating x== 2 returns True, whereas evaluating x== 3 return False.

63sage: x==2

64x == 2

65sage: x==3

66x == 3

Another common usage of the double equal sign (==) is to solve equations, such as the command

solve([x2 +x+1 == 0],x).

67sage: solve([x^2+x+2==0] ,x)

68[

69x == -1/2*I*sqrt (7) - 1/2,

70x == 1/2*I*sqrt (7) - 1/2

71]

Sage is a host of built-in commands to help the user solve equations and manipulate expressions.



20 CHAPTER 1. INTRODUCTION

The command solve(lhs==rhs, var) solve the equation lhs==rhs for the variable var. For example,

the command below solves the quadratic equation x2 −2 = 0 for x.

72sage: solve(x^2-2==0,x)

73[

74x == -sqrt (2),

75x == sqrt (2)

76]

A system of m equations in n unknown can also be solved with using the same command, but

formatted as

77sage: x,y = var(’x,y’)

78sage: solve ([2*x-y==3,x+4*y==-2],x,y)

79[

80[x == (10/9) , y == ( -7/9)]

81]

1.3.2 Useful Commands

In this section, we introduce few more popular commands in Sage.

• To simplify a function, we use .simplify−full() command :

f(x).simplify−full()

• To substitute a value c for variable x of a function, we use .substitute(x = c) command :

f(x).substitute(x=c)

• or substitute for multiple variable:
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f(x,y).substitute(x=c,y=d)

• Define a function f(x) such that f(x)= f1 on (a,b) and f(x)= f2 on (c,d), we use Piecewise

command . Notice that unlike the other command in Sage, Piecewise command has the first

letter capitalized:

f(x)=Piecewise([[(a,b),f1],[(c,d),f2]])

• To solve an equation f(x) = 0 for x, we use solve command:

solve(f(x)==0,x)

• To define y as a function of x:

y(x)=function(’y’,x)

• To factor a number or a function, we use factor() command :

factor(number)

• To expand an expression, we use expand():

expand(expression)

• To print a variable or a function f(x):

print f(x)

• To assign the right hand side of an equation contains in a variable u to x, we use .rhs()

command:

x=u.rhs()
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1.4 Functions

There are two ways to represent functions in Sage, depending on how they are to used. Consider

the following example:

Example 1.4.1. Enter the function x2−x+4
x−1 into Sage.

Solution:

Method 1: An explicitly way to present f as a function of the argument x is to enter:

82sage: f(x)=(x^2-x+4)/(x-1)

83sage: f(x)

84(x^2 - x + 4)/(x - 1)

To evaluate f(x) at x= 5, we use the command f(5)

85sage: f(5)

866

Method 2: Define a function as:

87sage: def f(x): return (x^2-x+4)/(x-1)

88sage: f(x)

89(x^2 - x + 4)/(x - 1)

Example 1.4.2. Enter the following piece-wise function into Sage:

f(x) =


tan(πx/4), it |x|< 1

x, if |x|> 1

Solution:
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sage : def f(x):

· · ·· : if abs(x) <1:

· · ·· : return tan(π∗x/4)

· · ·· : else:

· · ·· : return x
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Chapter 2

Graphs, Limits, and Continuity of

Functions

2.1 Plotting Graphs

2.1.1 Basics Plot

In this section, we will discuss how to plot graphs using Sage and how to utilize its various plot

options. We will discuss in detail several options that will be useful in our study of calculus. The

basic syntax for plotting the graph of a function y = f(x) with x ranging in value from a to b is

plot(f,x,a,b).

plot(f(x),x,a,b)

Example 2.1.1. Plot the graph of f(x) = 2x2 −4x+2 along the interval [−3,5]

Solution:

90sage: g=plot (2*x^2-4*x+2,x,-3,5)

25
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-3 -2 -1 1 2 3 4 5

5

10

15

20

25

30

Example 2.1.2. Plot the graph of y= sin(2x) along the interval [−3,3]

Solution:

91sage: g=plot(sin(2*x),x,-3,3)

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Example 2.1.3. Plot the graphs of the two functions given in Example 1.1 and Example 1.2 prior

on the same set of axes to show their points of intersection.

Solution:

92sage: g=plot ((2*x^2-4*x+2,sin(2*x)),x,-3,5)
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-3 -2 -1 1 2 3 4 5

5

10

15

20

25

30

Example 2.1.4. Plot the graphs of f(x) = 2x2+x+2
x+1 and g(x) = cos(2x)

2 on the same set of axes.

Solution:

93sage: g=plot (((2*x^2+x+2)/(x+1) ,(cos(2*x))/2),x,-5,5)

-4 -2 2 4

-4000

-3000

-2000

-1000

1000

2000

3000

Note that the graph of g(x) = cos(2x)/2 is displayed poorly in output above since its range (from

−1 to 1) is too small compared to the range of f(x) = (2x2 +x+2)/(x+1). We can zoom in by

specify the value of vertical line using ymin and ymax.

94sage: g=plot (((2*x^2+x+2)/(x+1) ,(cos(2*x))/2),x,-5,5,ymin=-10,

ymax =6)
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-4 -2 2 4

-10

-5

5

Example 2.1.5. Plot the graphs of the following functions.

(a) f(x) = 2x2

2−x2 (b) f(x) = 2sin(x)+cos(x) (c) f(x) = xex+ lnx (d) f(x) = 2x2

x2+2

Solution:

We recall that the natual base e is entered as e and that lnx is log(x). Note that sinx and cosx are

to be entered as sin(x) and cos(x).

(a)

95sage: g=plot ((2*x^2)/(2-x^2),x,-10,10,ymin=-4,ymax =4)

-10 -5 5 10

-4

-3

-2

-1

1

2

3

4

(b)

96sage: g=plot (2*sin(x)+cos(x),x,-2*pi ,2*pi)
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-6 -4 -2 2 4 6

-2

-1

1

2

(c)

97sage: g=plot(x*e^x+log(x),x,-3,3,ymin=0,ymax =10)

0.5 1 1.5 2 2.5 3

2

4

6

8

10

(d)

98sage: g=plot (2*x^2/(x^2+2),x,-4,4)

-4 -3 -2 -1 1 2 3 4

0.5

1

1.5
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2.1.2 Plot Options

Next, we will introduce various options that can be specified within the plot command.

• Adding a title to a graph:

plot(f(x),x,a,b,title="Here is a graph"

• Use figsize option to control the plot size:

plot(f(x),x,a,b,figzie=’a number’

• Draw a graph with color:

plot(f(x),x,a,b, color= ’a color’)

• Draw a graph and specify its thickness:

plot(f(x),x,a,b,color= ’a color’, thickness=’a number’)

• Draw graph with specify the line style and legend−label:

plot(f(x),x,a,b,color= ’a color’,linestyle=’–’, thickness=’a number’,legend−label=’f(x)’)

• Use frame option to puts a box around the graph

plot(f(x),x,a,b,frame=True)

• Use axes−labels to verify the axes:

plot(f(x),x,a,b,axes−labels=[’x-axis, units’,’y-axis, units’])

• To draw an ellipse, use implicit−plot command:
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implicit−plot(f(x),(x,a,b),(y,c,d))

Example 2.1.6. Plot(x3,x,−4,4) with a title:"Here is a graph"

Solution:

99sage: g=plot(x^3,x,-4,4, title="Here␣is␣a␣graph")
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Example 2.1.7. Plot(x2,x,−4,4) with different size.

Solution:

100sage: g=plot(x^2,x,-4,4,figsize =2)

-4 -3 -2 -1 1 2 3 4

5

10

15

101sage: g=plot(x^2,x,-4,4,figsize =4)
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Example 2.1.8. Plot(x2,x,−4,4) with purple color.

Solution:

102sage: g=plot(x^2,x,-4,4, color= ’purple ’,figsize =3)
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Example 2.1.9. Plot(x2,x,−4,4) with color and thickness features.

Solution:

103sage: g=plot(x^2,x,-4,4, color= ’green’, thickness =10, figsize

=3)
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Example 2.1.10. Plot(x2,x,−4,4) with multiple options.

Solution:

104sage: g=plot(x^2,x,-4,4, color= ’green’,linestyle=’--’,

thickness =10, legend_label=’f(x)’,figsize =3)
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f(x)

Example 2.1.11. Plot multiple function on a single graphic:

Solution:

105sage: g1=plot(x^3,x,-4,4, title=’Here␣is␣a␣graph’)

106sage: g2=plot(x^2,x,-4,4, color= ’green’,linestyle=’--’,

thickness =2, legend_label=’f(x)’,figsize =3)

107sage: g3=plot (2*x^2,x,-4,4, color= ’purple ’,figsize =3)
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108sage: g1+g2+g3

109Graphics object consisting of 3 graphics primitives

-4 -3 -2 -1 1 2 3 4

-60

-40

-20

20

40

60
Here is a graph

f(x)

Example 2.1.12. Plot(x2,x,−4,4) with color, frame, and label.

Solution:

110sage: g=plot(x^2,x,-4,4, color= ’green’,frame=True ,

legend_label=’f(x)’)
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Example 2.1.13. Plot(x2,x,−4,4) with axes.

Solution:

111sage: g=plot(x^2,x,-4,4, axes_labels =[’x-axis ,units ’,’y-axis ,

units’])
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Example 2.1.14. Draw the ellipse x2

2 + y2

4 = 2

Solution:

112sage: x,y=var(’x,y’)

113sage: g=implicit_plot(x^2/2+y^2/4==2 , (x, -3, 3), (y, -3,3))
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-3

-2

-1

0

1

2

3

2.2 Limits

2.2.1 Evaluating Limits

To compute the limit of function f(x) as x approaches a:

limit(f(x),x=a)

To compute the limit of function f(x) as x approaches a from the left (meaning x < a):
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limit(f(x),x=a,dir=’minus’)

To compute the limit of function f(x) as x approaches a from the right (meaning x > a):

limit(f(x),x=a,dir=’plus’)

Example 2.2.1. Evaluate lim
x→1

2x2+x+4
x+1

Solution:

Following are tables of values of the function limx→1
2x2+x+4
x+1 when x is sufficiently close to 1.

From the left:

114sage: def f(x): return (2*x^2+x+4)/(x+1)

115sage: step=float (1/100)

116sage: initial=float (9/10)

117sage: table ([(i*step+initial ,f(i*step+initial)) for i in

[1..10]])

1180.91 3.43780104712

1190.92 3.44416666667

1200.93 3.45067357513

1210.94 3.45731958763

1220.95 3.4641025641

1230.96 3.47102040816

1240.97 3.47807106599

1250.98 3.48525252525

1260.99 3.49256281407

1271.0 3.5

From the right:

128sage: def f(x): return (2*x^2+x+4)/(x+1)

129sage: step=float ( -1/100)
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130sage: initial=float (11/10)

131sage: table ([(i*step+initial ,f(i*step+initial)) for i in

[1..10]])

1321.09 3.57234449761

1331.08 3.56384615385

1341.07 3.5554589372

1351.06 3.54718446602

1361.05 3.53902439024

1371.04 3.53098039216

1381.03 3.52305418719

1391.02 3.51524752475

1401.01 3.50756218905

1411.0 3.5

From these tables, it is reasonable to expect that the limit is 3.5. Evaluating the limit confirm this:

142sage: limit ((2*x^2+x+4)/(x+1), x=1)

1437/2

Example 2.2.2. Evaluate lim
x→1

2x2+x−1
x+1

Solution:

144sage: limit ((2*x^2+x-1)/(x+1),x=1)

1451

Example 2.2.3. Evaluate lim
x→1−

x2−1
x−1

Solution:
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146sage: limit((x^2-1)/(x-1),x=1, dir=’minus’)

1472

Example 2.2.4. Evaluate lim
x→1+

x2−1
x−1

Solution:

148sage: limit((x^2-1)/(x-1),x=1, dir=’plus’)

1492

Example 2.2.5. Evaluate limx→−3
x+1
x+3

Solution:

150sage: limit((x+1)/(x+3),x=-3)

151Infinity

Example 2.2.6. Show that f(x) = 2∗cos(1/x) does not have a limiting value as x approach 0.

Solution:

We define

152sage: f(x)=2*cos(1/x)

153sage: initial=float (1/10)

154sage: step=float ( -1/100)

155sage: table ([(i*step+initial ,f(i*step+initial)) for i in

[1..8]])

1560.09 0.230559899091497

1570.08 1.99559655835716

1580.07 -0.296003263241933

1590.06 -1.14916333703824
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1600.05 0.816164123626784

1610.04 1.98240562372695

1620.03 -0.679423624807142

1630.02 1.92993205698422

These values suggest that the limit does not exits. To make this clear, we consider the graph:

164sage: g=plot(f(x),x,-1/10 ,1/10 , figsize =3)

-0.1 -0.05 0.05 0.1
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2

This indicate that there are too much oscillation around x= 0. Let us try to zooming in around this

point:

165sage: g=plot(f(x),x, -1/100 ,1/100 , figsize =3)

-0.01 -0.005 0.005 0.01

-2

-1

1

2

Note that zooming in on this graph does not help. This indicates that the limit does not exist.

Example 2.2.7. Investigate the function f(x) = x
|x|

as x→ 0.
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Solution:

166sage: limit(x/abs(x),x=0,dir=’minus ’)

167-1

168sage: limit(x/abs(x),x=0,dir=’plus’)

1691

Since the left-hand and right-hand limits are not the same, we conclude that the limit does not exist.

170sage: g=plot(x/abs(x),x,-3,3,figsize =3)
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2.2.2 Limits Involving Trigonometric Functions

For trigonometric functions, Sage uses the same traditional notation in calculus.

Example 2.2.8. Evaluate lim
x→0

sin(3x)
x

Solution:

171sage: limit((sin(3*x)/x),x=0)

1723
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We can check the answer by graphing the function up close to the neighborhood of x= 0

173sage: g=plot((sin(3*x)/x),x,-1,1)
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Example 2.2.9. Evaluate lim
t→0

tant
|t|

Solution:

174sage: limit((tan(x))/abs(x),x=0,dir=’plus’)

1751

176sage: limit((tan(x))/abs(x),x=0,dir=’minus ’)

177-1

Thus the limit does not exist. This can be clearly seen from the graph of the function below.

178sage: g=plot((tan(x))/abs(x),x,-4,4,ymin=-10,ymax =10)
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Example 2.2.10. Find

(a) lim
x→π

1
cosx (b) lim

x→−π2

3sinx

Solution:

179sage: limit (1/cos(x), x=pi)

180-1

181sage: limit (3^( sin (x)),x=- pi/2)

1821/3
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3
(b)

Example 2.2.11. Find lim
x→c

sinx−sinc
sinc for values of c= 0,π/6,π/4π/3,π/2.

Solution:
sage : c= [0,π/6,π/4,π/3,π/2]

sage : for i in range(5):

· · ·· : limit((sin x - sin c[i])/(sin c[i]),x=c[i])

0, −1
2 , −1

2

√
2, −1

2

√
3, −1

Example 2.2.12. Find lim
x→0

cos(nx)−1
x2 for various values of n.

Solution:

Here is a table of limits for integer values of n ranging from 1 to 10. Notice that to avoid the

confusing between an integer n and n command which returns numerical value, we always try to

substitute integer n by i in sagecommandline:
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183sage: table ([( limit((cos(i*x) -1)/x^2,x=0))for i in [1..10]])

184-1/2 -2 -9/2 -8 -25/2 -18 -49/2 -32 -81/2

-50

A reasonable guess at a general formula for the answer would be limx→0(cos(nx) − 1)/x2 =

−n2/2. We can check this with values of n ranging from 10 to 20.

185sage: table ([([( limit ((cos(i*x) -1)/x^2,x=0), -i^2/2) ])for i in

[10..20]])

186(-50, -50)

187(-121/2, -121/2)

188(-72, -72)

189(-169/2, -169/2)

190(-98, -98)

191(-225/2, -225/2)

192(-128, -128)

193(-289/2, -289/2)

194(-162, -162)

195(-361/2, -361/2)

196(-200, -200)

For a mathematical proof, first take n= 1 and plot the graph

197sage: g=plot((cos(x) -1)/x^2,x,-pi,pi,figsize =3)
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The graph above confirms that the limit is −1/2.

For the general case, let t = nx so that x2 = t2

n2 . Then note that x→ 0 if and only if t→ 0. Thus,

the limit can be evaluated in terms of t as

lim
x→0

cos(nx)−1
x2 = lim

t→0

cos(t)−1
t2/n2 = n2 lim

t→0

cos(t)−1
t2

=−
n2

2

2.2.3 Limits Involving Infinity

Example 2.2.13. Evaluate lim
x→∞ 3x−2√

x2+2
and lim

x→−∞ 3x−2√
x2+2

Solution:

198sage: limit ((3*x-2)/sqrt(x^2+2), x=infinity)

1993

200sage: limit ((3*x-2)/sqrt(x^2+2), x=-infinity)

201-3

Observe how the two limits differ. The following graph confirms this.

202sage: a=plot ((3*x-2)/sqrt(x^2+2), x,-15,15, figsize =3)
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Example 2.2.14. Evaluate lim
x→3−

√
9−x2

x−3

Solution:

203sage: limit(sqrt(9-x^2)/(x-3), x=3, dir=’minus’)

204-Infinity

We plot the function over two different ranges to visually understand why the answer is -∞. Notice

how the first range fails to show this.

205sage: g1=plot(sqrt(9-x^2)/(x-3), x,1,3,ymin=-5,ymax=2,figsize

=3)
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206sage: g2=plot(sqrt(9-x^2)/(x-3), x,1,3,ymin=-100,ymax=2,

figsize =3)
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Example 2.2.15. Evaluate lim
x→∞cos(x)

Solution:

207sage: limit(cos(x), x=infinity)

208ind

Example 2.2.16. Find lim
x→∞ cosx

x

Solution:

209sage: limit(cos(x)/x, x=infinity)

2100

We can verify this limit by using the Squeeze Theorem. In this case, we take f(x) = − 1
|x|

, g(x) =

cosx
x , and h(x) = 1

|x|
. Then f(x)6 g(x)6 h(x) since −1 6 cosx6 1

211sage: g1=plot ((-1/abs(x)),x,0,10,ymin=-1,ymax=1,color=’green’,

figsize =3)

212sage: g2=plot(cos(x)/x,x,0,10,ymin=-1,ymax=1,color=’red’,

figsize =3)

213sage: g3=plot (1/abs(x),x,0,10,ymin=-1,ymax=1,color=’purple ’,

figsize =3)
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214sage: g=g1+g2+g3

2 4 6 8 10
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Since − 1
|x|

and 1
|x|

both approach 0 as x→∞, we conclude that cosxx approaches zero as well.

Example 2.2.17. Evaluate lim
x→1+

( 1
lnx −

1
x−1)

Solution:

215sage: limit (1/log(x) -1/(x-1),x=1, dir=’plus’)

2161/2

We can graph the function near x= 1 to visually understand why the answer is 1/2:

217sage: g=plot (1/log(x) -1/(x-1), x,0,1, figsize =3)
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Note, however, that this example shows that 1/lnx and 1/(x−1) both grow to ∞ at the same rate

as x→ 1+
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Example 2.2.18. Let f(x) = x2n−1
x2m−1 . Evaluate limx→1 f(x) by substituting in various values of m

and n.

Solution:

218sage: table ([[ limit((x^i-1)/(x^j-1),x=1) for i in [1..8]] for

j in [1..8]] , align=’center ’,frame=True , header_row =[’i_1’,’

i_2’,’i_3’,’i_4’,’i_5’,’i_6’,’i_7’,’i_8’], header_column =[’’

,’j_1’,’j_2’,’j_3’,’j_4’,’j_5’,’j_6’,’j_7’,’j_8’])

219+-----++-----+-----+-----+-----+-----+-----+-----+-----+

220| || i_1 | i_2 | i_3 | i_4 | i_5 | i_6 | i_7 | i_8 |

221+=====++=====+=====+=====+=====+=====+=====+=====+=====+

222| j_1 || 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

223+-----++-----+-----+-----+-----+-----+-----+-----+-----+

224| j_2 || 1/2 | 1 | 3/2 | 2 | 5/2 | 3 | 7/2 | 4 |

225+-----++-----+-----+-----+-----+-----+-----+-----+-----+

226| j_3 || 1/3 | 2/3 | 1 | 4/3 | 5/3 | 2 | 7/3 | 8/3 |

227+-----++-----+-----+-----+-----+-----+-----+-----+-----+

228| j_4 || 1/4 | 1/2 | 3/4 | 1 | 5/4 | 3/2 | 7/4 | 2 |

229+-----++-----+-----+-----+-----+-----+-----+-----+-----+

230| j_5 || 1/5 | 2/5 | 3/5 | 4/5 | 1 | 6/5 | 7/5 | 8/5 |

231+-----++-----+-----+-----+-----+-----+-----+-----+-----+

232| j_6 || 1/6 | 1/3 | 1/2 | 2/3 | 5/6 | 1 | 7/6 | 4/3 |

233+-----++-----+-----+-----+-----+-----+-----+-----+-----+

234| j_7 || 1/7 | 2/7 | 3/7 | 4/7 | 5/7 | 6/7 | 1 | 8/7 |

235+-----++-----+-----+-----+-----+-----+-----+-----+-----+

236| j_8 || 1/8 | 1/4 | 3/8 | 1/2 | 5/8 | 3/4 | 7/8 | 1 |

237+-----++-----+-----+-----+-----+-----+-----+-----+-----+
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Can you guess a formula for limx→1 f(x) in term ofm andn? Enter the command limit((xn −1)/(xm −1),x = 1)

into an input cell and evaluate it to verify your conjecture.

Let us end this section with an example where the limit command is used to evaluate the derivative

of a function (in anticipation of commands introduced in the next chapter for computing derivaties).

By definition, the derivative of a function f at x (i,e,m the slope of its tangent line at x) is

f ′(x) = lim∆x→0
f(x+∆x)− f(x)

∆x

Example 2.2.19. Find the derivative of f(x) = 1
4x according to the limit definition.

Solution:

We first exam the derivative by tabulating values of the difference quotient, f(x+∆x)−f(x)∆x , for some

arbitrarily chosen values of ∆x:

238sage: f(x)= 1/(4*x)

239sage: var(’c’)

240c

241sage: c=[10^( -1), 10^( -2), 10^( -4), 10^( -5), 10^( -6), 10^( -8)]

242sage: table ([(n(c[i],digits =4) ,((f(x+c[i])-f(x))/c[i])) for i

in [0..5]])

2430.1000 25/(10*x + 1) - 5/2/x

2440.01000 2500/(100*x + 1) - 25/x

2450.0001000 25000000/(10000*x + 1) - 2500/x

2460.00001000 2500000000/(100000*x + 1) - 25000/x

2471.000e-6 250000000000/(1000000*x + 1) - 250000/x

2481.000e-8 2500000000000000/(100000000*x + 1) - 25000000/x

This table suggest that f ′(x) = −1/(4x2) in the limit asDeltax→ 0. We confirm this with Sage:

249sage: limit((f(x+Deltax)-f(x))/Deltax ,Deltax =0)
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250-1/4/x^2

2.3 Continuity

Recall that a function is countinous at x = a if and only if limx→af(x) = f(a). Graphically, this

means that there is no break (or jump) in the graph of f at the point (a,f(a)). It is not possible to

indicate this discontinuity using computer graphics for the situation whre the limit exists and the

function is defined at a but the limit is not equal to f(a). For other cases of discontinuity, computer

graphics are very helpful.

To verify if a given function is continuous at a point, we evaluate its limit there and check if this

limit is equal to the value of the function.

Example 2.3.1. Show that the function f(x) = x3 −1 is continuous everywhere.

Solution:

We could draw the graph and observe this fact. On the other hand, we can get Sage to check

continuity:

251sage: def f(x): return x^3-1

252sage: var(’c’)

253c

254sage: bool(limit(f(x),x=c)==f(c))

255True

This means that limx→c f(x) = f(c) and hence f is continuous everywhere.

Example 2.3.2. Find point of discontinuity for each of the followin function:

(a) Let f(x) =


x2−1
x−1 , if x 6= 1

2, if x= 1
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(b) Le g(x) =


x2−1
x−1 , if x 6= 1

6, if x= 1

Solution:

The piece-wise functions can be defined by using if, else:

(a) Define the function f:

sage : def f(x):

· · ·· : if x<>1:

· · ·· : return (x2 −1)/(x−1)

· · ·· : else:

· · ·· : return 2

Then we can check continuity of f at x= 1.

sage : bool(limit(f(x),x=1)==f(1))
True

Hence, the function is continuous at x = 1. For continuity at other points, we observe that the

rational function x2−1
x−1 simplifies to x+1 in this case (factor the numerator!) and thus is continuous

at any point except x= 1. Thus, f is continuous everywhere. We can also confirm this by examining

the graph of f below.

256sage: g=plot(f(x),x,-6,6,figsize =3)
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(b) As in part a, we define the function and consider continuity of g at x= 1:
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sage : def g(x):

· · ·· : if x<>1:

· · ·· : return (x2 −1)/(x−1)

· · ·· : else:

· · ·· : return 6

sage : bool(limit(g(x),x=1)==g(1))
False

Thus, g is NOT continuous at x= 1. For continuity at other point, we again observe that the ratio-

nal function x2−1
x−1 = x+1 and thus is continuous for x 6= 1.

Caution: The plot of the graph of g given below indicates (incorrectly) that g is continuous every-

where! Care must be taken when examining Sage plots to draw conclusion about continuity.

257sage: g=plot(g(x),x,-6,6,figsize =3)
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Example 2.3.3. Let f(x) =


cos(1

x), if x 6= 0

0, if x= 0
. Prove that for any number k between −1 and 1

there exists a value for c such that f(c) = k.

Solution:

Note: observe that f is not continous at x = 0 so the converse of the Intermediate Value Theorem

does not hold.

For k = 0, we choose c = 0 so that f(c) = 0. For any nonzero k between −1 and 1, define y =
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cos−1k (using the principal domain of the cos function) and let c= 1/y. Then f(c) = cos(1/c) =

cosy= k. The graph of f following shows that there are in fact infinitely many choices for c.

258sage: g=plot(cos(1/x),x,-pi ,pi,figsize =3)
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Chapter 3

Differentiation

3.1 The Derivative

In this section, we introduce few more popular commands in Sage.

• To calculate the derivative of a function, use diff() or .derivative() command:

diff(f(x)) or f(x).derivative()

• To differentiate f(x,y) with respects to x:

diff(f(x,y),x)

• To compute the n derivative respect to x:

diff(f(x),x,n)

3.1.1 Slope of Tangent

The most fundamental concepts in calculus is the derivative. Its definition is given by

f ′(a) = lim
h→0

f(h+a)− f(a)

h

55
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where geometrically f ′(a) is the slope of the line tangent to the graph of f(x) at x = a, provided

that the limit exists. We can view this graphically in the illustration below, where the tangent line

(shown in blue) is viewed as a limit of secant lines (one shown in red) as h→ 0.
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Example 3.1.1. Calculate the derivative of f(x) = x4

3 at x = 1 using the point-wise definition of a

derivative.

Solution:

We first use the table command to tabulate slopes of secant lines passing through the points at

a = 1 and a+h = 1+h by choosing arbitrarily small values for h (taken as reciprocal powers of

10)

259sage: a,x,i=var(’a,x,i’)

260sage: f(x)=x^4/3

261sage: a=1

262sage: table ([(n(1/(10^i),digits =4), n((f(a+1/(10^i))-f(a))

/(1/(10^i)),digits =4)) for i in [1..5]])

2630.1000 1.547

2640.01000 1.353

2650.001000 1.335

2660.0001000 1.334

2670.00001000 1.333
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Note that our use of the table command, which displays a list as an array of rectangular cells. From

the table output, we may conclude that f ′(1) = 4/3. A more rigorous approach is to algebraically

simplify the difference quotient, f(a+h)−f(a)h

268sage: ((f(a+h)-f(a))/h).simplify_full ()

2691/3*h^3 + 4/3*h^2 + 2*h + 4/3

It is now clear that f(a+h)−f(a)h → 4
3 as h→ 0. This can be checked using Sage limit command:

270sage: limit((f(a+h)-f(a))/h,h=0)

2714/3

Below is a plot of the graph of f(x) (in black) and its corresponding tangent line (in blue), which

also confirms our answer:

272sage: g1=plot(f(x),x,-3,3,ymin=-3,ymax=5,figsize=3,color=’

black’)

273sage: ff(x)=diff(f(x))

274sage: g2=plot(ff(a)*(x-a)+f(a),x,-3,3,ymin=-3,ymax=5,figsize

=3)
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Recall that the tangent line of f(x) at x= a is given by:

y= f ′(a)(x−a)+ f(a)
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3.1.2 Derivative as a Function

The derivative is best represented of as a slope function, one that gives the slope of the tangent line

at any point on the graph of f(x) where this slope exists:

f ′(x) = lim
h→0

f(x+h)− f(x)

h

Example 3.1.2. Compute the derivative of cos(x2) and evaluate it at x=
√
π/4

Solution:

275sage: f(x)=cos(x^2)

276sage: diff(f(x)).substitute(x=sqrt(pi/4))

277-1/2* sqrt (2)*sqrt(pi)

where substitute() command inserts values of variable in () into function f ′(x).

Note: Observe that the derivative of cos(x2) is NOT −sin(x2) but −2xsin(x2). This is because

cos(x2) is a composite function. It’s a rule for differentiating composite functions, known as the

Chain Rules.

Example 3.1.3. Compute the derivative of f(x) =


cosx
x if x 6= 0

0 if x= 0
Solution:

To define functions described by two different formulas over separate domains, we employ Sage

Piecewise command.

278sage: f1(x)=cos(x)/x

279sage: f2(x)=0

280sage: f = Piecewise ([[(0 ,0),f2],[(-infinity ,0),f1],[(0,

infinity),f1]] )

281sage: f.derivative ()
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282Piecewise defined function with 3 parts , [[(0, 0), x |--> 0],

[(-Infinity , 0), x |--> -sin(x)/x - cos(x)/x^2], [(0, +

Infinity), x |--> -sin(x)/x - cos(x)/x^2]]

Note: It is clear for x 6= 0 that the derivative is −sin(x)
x −

cos(x)
x2 as a result of the Quotient Rule .

Notice that the fact that f(0) = 0 does not mean that f is a constant.

A plot of the graph of f(x) reveals that it is discontinuous at x = 0, and thus not differentiable

there:
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Example 3.1.4. Find the equation of the tangent line to the graph of f(x) =
√

2x+2 at x= 2.

Solution:

Remember that the tangent line to a function f(x) at x = a is L(x) = f(a)+ f ′(a)(x−a). Hear,

a= 2:

283sage: f(x)=sqrt (2*x+2)

284sage: L(x)=f(2)+diff(f(x)).substitute(x=2)*(x-2)

285sage: L(x)

2861/6* sqrt (6)*(x - 2) + sqrt (6)

To see that L(x) is indeed the desired tangent line, we will plot f and L together:

287sage: g=plot((f(x),L(x)),x,0,4, figsize =3)
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Example 3.1.5. Find an equation of the line passing through the point P(2,−3) and tangent to the

graph of f(x) = x2 +1

Solution:

Let us refer to Q(a,f(a)) as the point of tangentcy for our desired tangent line. To determine Q,

we compute the slope of our desired tangent line from two different perspectives:

Slope of line segment PQ:

288sage: var(’a’)

289a

290sage: f(x)=x^2+1

291sage: m=(f(a) -(-3))/(a-2)

292sage: m

293(a^2 + 4)/(a - 2)

Derivative of f(x) at x= a:

294sage: f(x)=x^2+1

295sage: diff(f(x)).substitute(x=a)

2962*a

Equating the two formulas for slope above and solving for a yields:

297sage: solve(m==diff(f(x)).substitute(x=a),a)
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298[

299a == -2*sqrt (2) + 2,

300a == 2*sqrt (2) + 2

301]

Since there are two valid solutions for a, we have in fact found two such tangent lines. Their

equations are given by:

y1 = f
′(a)(x−a)+ f(a) as a→ 2−2

√
2

y2 = f
′(a)(x−a) = f(a) as a→ 2+2

√
2

302sage: y1(x)=(diff(f(x)).substitute(x=a)*(x-a)+f(x).substitute(

x=a)).substitute(a=2* sqrt (2) +2).simplify_full ()

303sage: y1(x)

3044*x*(sqrt (2) + 1) - 8*sqrt (2) - 11

305sage: y2(x)=(diff(f(x)).substitute(x=a)*(x-a)+f(x).substitute(

x=a)).substitute(a=-2*sqrt (2)+2).simplify_full ()

306sage: y2(x)

307-4*x*(sqrt (2) - 1) + 8*sqrt (2) - 11

Plotting these tangent lines together with the graph of f(x) confirms that our solution is correct:

308sage: g=plot((f(x),y1(x),y2(x)),x,-6,6,figsize =3)
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3.2 Higher-Order Derivatives

Suppose we are interested in pursuing higher order derivatives of a function. The reasons are they

relate to applications of minimum and maximum values, physical applications such as velocity and

acceleration, or finding points of inflection.

Example 3.2.1. Compute the first eight derivatives of f(x) = cos(x). What is the 255th derivative

of f?

Solution:

Here are the first eight derivative of f:

309sage: f(x)=cos(x)

310sage: ([diff(f(x),x,i) for i in [1..8]])

311[-sin(x), -cos(x), sin(x), cos(x), -sin(x), -cos(x), sin(x),

cos(x)]

We observe from the output that the higher-order derivatives of f are periodic modulo 4, which

means they repeat every four derivative. Since 255 has remainder 3 divided by 4, it follows that

f(255)(x) = f(3)(x) = sin(x)

Of course, Sage can compute this derivative (see output below), but the pattern above gives us a
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more in-depth understanding of the higher-order derivatives of cos(x).

312sage: diff(f(x),x,255)

313sin(x)

Example 3.2.2. Compute the first three derivatives of f(x) = xsin(x)

Solution:

We use the command diff(f(x),x,n) to compute the nth derivative of f. Here, we set n= 1,2,3

314sage: f(x)=x*sin(x)

315sage: diff(f(x),x)

316x*cos(x) + sin(x)

317sage: diff(f(x),x,2)

318-x*sin(x) + 2*cos(x)

319sage: diff(f(x),x,3)

320-x*cos(x) - 3*sin(x)

A quicker way to generate a list of higher-order derivatives is to use the table command. For

example, here is a list of the first five derivatives of f:

321sage: ([diff(f(x),x,i) for i in [1..5]])

322[x*cos(x) + sin(x), -x*sin(x) + 2*cos(x), -x*cos(x) - 3*sin(x)

, x*sin(x) - 4*cos(x), x*cos(x) + 5*sin(x)]

3.3 Chain Rule and Implicit Differentiation

In this section, we demonstrate not only how Sage uses the Chain Rule to differentiate compos-

ite functions but also to compute derivatives of functions defined implicitly by equations where

solving for the dependent variable is not desirable.
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Example 3.3.1. Find all horizontal tangents of f(x) =
√

2x4−2x+1
2x4+x+1

Solution:

We first compute the derivative of f, which requires the Chain Rule.

323sage: f(x)=sqrt ((2*x^4-2*x+1) /(2*x^4+x+1))

324sage: diff(f(x)).simplify_full ()

3253/2*(6*x^4 - 1)/((4*x^8 + 4*x^5 + 4*x^4 + x^2 + 2*x + 1)*sqrt

((2*x^4 - 2*x + 1)/(2*x^4 + x + 1)))

Horizontal tangents have zero slope and so it suffices to solve f ′(x) = 0 for x.

326sage: solve(diff(f(x))==0,x)

327[

328x == 1/6*I*6^(3/4) ,

329x == -1/6*6^(3/4) ,

330x == -1/6*I*6^(3/4) ,

331x == 1/6*6^(3/4)

332]

Observe that the solutions above are nothing more than the zeros of the numerator of f ′(x). We

ignore the first and third solutions listed above, which are imaginary. Hence, x = 1
6 ∗6

3
4 = 0.6389

and x=−1
6 ∗6

3
4 =−0.6389. A plot of the graph of f below confirms our solution.

333sage: g=plot(f(x),x,-2,2,figsize =3)
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Example 3.3.2. Find all horizontal tangents of the lemniscate described by 4(x2+y2)2 = 15(x2−

y2)

Solution:

Implicit differentiation is required here to compute dy
dx , which involves first differentiating the

lemniscate equation and then solving for our derivative. Observe that we make the substitution

y→ y(x), which makes explicit our assumption that y depends on x.

334sage: var(’x,y’)

335(x, y)

336sage: y(x)=function(’y’)(x)

337sage: eq=4*(x^2+y^2) ^2==15*(x^2-y^2)

338sage: eq.substitute(y=y(x))

339x |--> 4*(x^2 + y(x)^2)^2 == 15*x^2 - 15*y(x)^2

340sage: diff(eq ,x)

341x |--> 16*(x^2 + y(x)^2)*(y(x)*D[0](y)(x) + x) == -30*y(x)*D

[0](y)(x) + 30*x

342sage: solve(diff(eq,x),diff(y(x)))

343[

344D[0](y)(x) == -(8*x^3 + 8*x*y(x)^2 - 15*x)/(8*y(x)^3 + (8*x^2

+ 15)*y(x))

345]
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Notice that D[0] (y)(x) is the first derivative of y(x) or y ′(x).

To find horizontals, it suffices to find where the numerator of y ′(x) vanishes (since the denominator

never vanishes except when y= 0). Thus, we solve the system of equations


15x−8x3 −8xy2 = 0

4(x2 +y2)2 = 15(x2 −y2)

since the solutions must also lie on the lemniscate.

346sage: var(’x,y’)

347(x, y)

348sage: solve ([4*(x^2+y^2) ^2==15*(x^2-y^2) ,15*x-8*x^3-8*x*y

^2==0] ,x,y)

349[

350[x == 0, y == -1/2*I*sqrt (15)],

351[x == 0, y == 1/2*I*sqrt (15)],

352[x == 0, y == 0],

353[x == -3/8* sqrt (5)*sqrt (2), y == -1/8* sqrt (15)*sqrt (2)],

354[x == -3/8* sqrt (5)*sqrt (2), y == 1/8* sqrt (15)*sqrt (2)],

355[x == 3/8* sqrt (5)*sqrt (2), y == -1/8* sqrt (15)*sqrt (2)],

356[x == 3/8* sqrt (5)*sqrt (2), y == 1/8* sqrt (15)*sqrt (2)]

357]

From the output, we see that the last four solutions are valid:

(−3/8∗ sqrt(5)∗ sqrt(2),−1/8∗ sqrt(15)∗ sqrt(2))≈ (−1.186,−0.685),

(−3/8∗ sqrt(5)∗ sqrt(2),1/8∗ sqrt(15)∗ sqrt(2)),

(3/8∗ sqrt(5)∗ sqrt(2),−1/8∗ sqrt(15)∗ sqrt(2)),
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(3/8∗ sqrt(5)∗ sqrt(2),1/8∗ sqrt(15)∗ sqrt(2))

which can be confirmed by inspecting the graph of the lemniscate below. Observe the sysmmetry

in the solutions.

358sage: x,y=var(’x,y’)

359sage: g=implicit_plot (4*(x^2+y^2) ^2==15*(x^2-y^2), (x,-3,3) ,(y

,-2,2),figsize =3)
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3.4 Derivatives of Inverse, Exponential and Logarithmic Func-

tions

3.4.1 Inverse Function

Recall that a function g(x) is the inverse of a given function f(x) if f(g(x)) = g(f(x)) = x. The

inverse of f(x) is denoted by f−1(x). We note that a necessary and sufficient condition for a

function to have an inverse is that it must be one-to-one. On the other hand, a function is one-to-

one if it is strictly increasing or strictly decreasing throughout its domain.

Example 3.4.1. Determine if the function f(x) = 2x2 − 2x+ 1 has an inverse on the domain

(−∞,∞). If it exists, then find the inverse.

Solution:
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We note that f(0) = f(1) = 1. Thus, f is not one-to-one. We can also plot the graph of f and note

that it fails the Horizontal Line Test since it is not increasing on its domain.

360sage: f(x)=2*x^2-2*x+1

361sage: g=plot(f(x),x,-1,2,figsize =3)
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However, observe that if we restrict the domain of f to an interval where f is either increasing or

decreasing, say [1,∞], then its inverse exists:

362sage: g=plot(f(x),x,1,5, figsize =3)
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35
40

To find the inverse on this restricted domain, let y = f−1(x), Then f(y) = x. Thus, we solve for y

from the equation f(y) = x.

363sage: var(’x,y’)

364(x, y)
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365sage: sol=solve(f(y)==x,y)

366sage: sol

367[

368y == -1/2* sqrt (2*x - 1) + 1/2,

369y == 1/2* sqrt (2*x - 1) + 1/2

370]

Note that Sage gives two solotions. Only the second one is valid because it has range [1,∞],

which agrees with the domain of f. Therefore,

f−1(x) =
1
2
(1+
√

2x−1)

To extract this solution from the above output, we use the syntax below and denote the inverse

function in Sage by g(x).

371sage: g(x)=sol [1]. rhs()

372sage: g(x)

3731/2* sqrt (2*x - 1) + 1/2

Note: One can also attempt to verify g(f(x)) = x. However, Sage cannot confirm this identity:

374sage: g(f(x)).simplify_full ()

3751/2* sqrt (4*x^2 - 4*x + 1) + 1/2

Lastly, a plot of the graph of f(x) and g(x) shows their expected symmetry about the diagonal line

y= x.

376sage: h=plot((f(x),g(x)),x,1/2,5, figsize=3,ymin=0,ymax =5)
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Example 3.4.2. Determine if the function f(x) = 2x3+3x has an inverse. If it exists, then compute

(f−1) ′(2).

Solution:

Since f ′(x) = 6x2+3, f is increasing on its domain therefore it has an inverse. Again, we can solve

for this inverse as in the previous example:

377sage: var(’f,g,x,y,sol’)

378(f, g, x, y, sol)

379sage: f(x)=2*x^3+3*x

380sage: sol=solve(f(y)==x,y)

381sage: sol

382[

383y == -1/2*(1/4*x + 1/4* sqrt(x^2 + 2))^(1/3) *(I*sqrt (3) + 1) +

1/4*(-I*sqrt (3) + 1) /(1/4*x + 1/4* sqrt(x^2 + 2))^(1/3) ,

384y == -1/2*(1/4*x + 1/4* sqrt(x^2 + 2))^(1/3)*(-I*sqrt (3) + 1) +

1/4*(I*sqrt (3) + 1) /(1/4*x + 1/4* sqrt(x^2 + 2))^(1/3) ,

385y == (1/4*x + 1/4* sqrt(x^2 + 2))^(1/3) - 1/2/(1/4*x + 1/4* sqrt

(x^2 + 2))^(1/3)

386]

Only the third solution listed above is valid, being real valued. Thus:
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f−1(x) = (
x

4
+

√
x2 +2

4
)

1
3 −

1

2(x4 +
√
x2+2
4 )

1
3

Denote our inverse as:

387sage: g(x)=sol [2]. rhs()

388sage: g(x)

389(1/4*x + 1/4* sqrt(x^2 + 2))^(1/3) - 1/2/(1/4*x + 1/4* sqrt(x^2

+ 2))^(1/3)

Lastly, we compute g ′(2):

390sage: n(diff(g(x)).substitute(x=2),digits =3)

3910.207

3.4.2 Exponential and Logarithmic Functions

One of the most important functions in mathematics and its applications is the exponential function.

In particular, the natual exponential function f(x) = ex, where

e= lim
x→0

(1+x)1/x ≈ 2.718

In Sage, we use the lower letter e to denote the Euler number:

392sage: limit ((1+x)^(1/x),x=0)

393e

Every exponential function f(x) = ax, a 6= 1, a > 0, has domain (−∞,∞) and range (0,∞). It

is also one-to-one on its domain. Hence, it has an inverse. The inverse of an exponential function

f(x) = ax is called the logarithm function and its denoted by g(x) = logax. The inverse of the

natural exponential function is denoted by g(x) = lnx and is called the natural logarithm. In Sage,

we use log(x) for lnx. Below is a plot of the graphs of ex and lnx in red and green, respectively.
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Observe their symmetry about the dashed line y= x.

394sage: x=var(’x’)

395sage: h1=plot(e^x,x,-2,5,figsize=3,color=’red’,ymin=-2,ymax =5)

396sage: h2=plot(log(x),x,-2,5,figsize=3,color=’green ’,ymin=-2,

ymax =5)

397sage: h3=plot(x, x,-2,5,figsize=3,linestyle=’--’,color=’black’

,ymin=-2,ymax =5)
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Please refer to Section 3.9 of Rogawski’s Calculus book for derivative formulas of general expo-

nential and logarithmic functions.

Example 3.4.3. Compute derivative of the following functions.

(a) f(x) = 2x (b) f(x) = 2x2 +ex (c) f(x) = lnx3

Solution:

We will input the functions directly and use the command diff. Note that log(x3) should read as

lnx3.

(a)

398sage: diff (2^x)

3992^x*log (2)

(b)
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400sage: diff (2*x^2+e^x)

4014*x + e^x

(c)

402sage: diff(log(x^3))

4033/x

Example 3.4.4. Find point on the graph of f(x) = x2e3x+5+3xwhere the tangent lines are parallel

to the line y= 3x−1.

Solution:

Since the slope of the given line equals 3 it suffices to solve f ′(x) = 3 for x to locate these points(s).

404sage: var(’f,␣sol’)

405(f, sol)

406sage: f(x)=x^2*e^(3*x+5)+3*x

407sage: sol=solve(diff(f(x))==3,x)

408sage: sol

409[

410x == (-2/3),

411x == 0

412]

Hence, there are two solotion: (x1,f(x1)) and (x2,f(x2)):

413sage: var(’x1 ,x2’)

414(x1 , x2)

415sage: x1=sol [0]. rhs()

416sage: x2=sol [1]. rhs()

417sage: f(x1)

4184/9*e^3 - 2
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419sage: f(x2)

4200

The plot below confirms that the two corresponding tangent lines (in green) are indeed parallel.

421sage: y1= f(x1)+(diff(f(x)).substitute(x=x1))*(x-x1)

422sage: y2= f(x2)+(diff(f(x)).substitute(x=x2))*(x-x2)

423sage: g1=plot(y1,x,-1,1,color=’green ’,figsize=3,ymin=-5,ymax

=15)

424sage: g2=plot(f(x),x,-1,1,figsize=3,ymin=-5,ymax =15)

425sage: g3=plot(y2,x,-1,1,color=’green ’,figsize=3,ymin=-5,ymax

=15)
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Chapter 4

Applications of the Derivative

We have seen how the derivative of a function is itself a function. This idea leads to many possible

applications, some of which we will now explore with Sage to demonstrate its ability to manipulate

and calculate complicated or tedious expressions.

4.1 Related Rates

Also notice that Sage will display the first derivative of function S(t) as:

D[0](S)(t) = diff(S(t))

Example 4.1.1. Let us assume a rubber ball is sitting out in the sun and that the heat causes

its surface area the increase at the rate of 3 square centimeters per hour. How fast is the radius

increasing when the radius is 2 centimeters?

To slove this problem, we will need the formula for the surface area of a sphere: S = 4πr2. Here,

the surface area S and the radius r are expressed as functions of t (time).

426sage: var(’t,S,r’)

427(t, S, r)

428sage: r(t)=function(’r’,t)

75
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429sage: S(t)=function(’S’,t)

430sage: sa=S(t)==4*pi*(r(t))^2

431sage: dsa=diff(sa,t)

432sage: dsa

433D[0](S)(t) == 8*pi*r(t)*D[0](r)(t)

Now differentiate this formula and solve for r ′(t):

434sage: sol=solve(dsa , diff(r(t)))

435sage: sol

436[

437D[0](r)(t) == 1/8*D[0](S)(t)/(pi*r(t))

438]

Since the output above is a nested list (each set of square braces denotes a list) and our solution,
S ′(t)

8πr(t) , represent the second element of the first list, we can extract it in order to define r ′(t) as

follows:

439sage: Dr(t)=sol [0]. rhs()

440sage: Dr(t)

4411/8*D[0](S)(t)/(pi*r(t))

Note: we will use Df(x) to denote the first derivative of function f(x). As above, Dr(t) = r ′(t).

Since we are given that S ′(t) = 3 and r(t) = 2, we substitute these into the formula for r ′(t):

442sage: n(Dr(t).substitute(r(t)==2, diff(S(t),t)==3),digits =3)

4430.0597

Therefore, when the radius is 2, it is increasing at the rate of about 0.0597 cm per hour.
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4.2 Extrema

We now consider how to find critical points and inflection points to determine extrema. Recall

that critical points of a function are those for which f ′(x) = 0 or for which f ′(x) does not exist.

Similarly, inflection points occur where either f ′′(x) = 0 or where f ′′(x) does not exist. Extrema

occur at critical points, but not all critical points are extrema. An inflection point is a point (c,f(c))

where concavity changes; this occurs where f ′′(c) = 0 or where f ′′(x) does not exist, and like

critical points, not all points where f ′′(x) = 0 (or where f ′′(x) does not exist) are inflection points.

Example 4.2.1. Find all local extrema and inflection points of f(x) = 1/(x2 +1)

Solution:

We first define f(x) in Sage:

444sage: var(’x,f’)

445(x, f)

446sage: f(x)=1/(2*x^2+1)

447sage: g=plot(f(x),x,-2,2,figsize=3,ymin=0,ymax =1)
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To find extrema of f, we locate its critical points, that is, those points where f ′(x) = 0 or f ′(x) is

undefined. We can solve the first case using Sage:

448sage: Df(x)=diff(f(x),x)

449sage: Df(x)
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450-4*x/(2*x^2 + 1)^2

451sage: solve(Df(x)==0,x)

452[

453x == 0

454]

Since f ′(x) is defined everywhere, it follows that there is exactly one critical point at x= 0, and at

that point, there is a maximum, as can be seen from the graph above. We could also have used the

second derivative test to confirm this:

455sage: diff(f(x),x,2).substitute(x=0)

456-4

Since the second derivative is negative at x= 0, the curve is concave down there. This means that

we have a local maximum at x= 0.

To find the points of inflection, we locate zeros of the second derivative:

457sage: solve(diff(f(x),x,2)==0,x)

458[

459x == -1/6* sqrt (6),

460x == 1/6* sqrt (6)

461]

To determine if these solutions are indeed inflection points, we need to check if there is a sign

change in f ′′(x) on either side of each.

462sage: g=plot(diff(f(x),x,2),x,-2,2,figsize =3)
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Notice from the graph above that f ′′(x) changes from positive to negative at x = −
√

6
6 and from

negative to positive at x =
√

6
6 . Thus, both point (−

√
6

6 ,f(−
√

6
6 )) and (

√
6

6 ,f(
√

6
6 )) are inflection

points.

4.3 Optimization

Extreme values of a function occur where the first derivative f ′(x) = 0 or f ′(x) does not exist.

This idea allows us to find maximum and minimum, a very important and widely applied in many

applications. For example, in business, people want to maximize the profits and minimize the costs.

In auto industry, we want to know what shape of the car will minimize the air resistant. There are

many similar problems exist in many other fields. We will go over some of these applications in

this chapter.

4.3.1 Traffic Flow

Example 4.3.1. Traffic flow along a major highway in Philly between 6 AM and 10 AM can be

modeled by the function f(t) = 20t−40
√
t+50 (in miles per hour), where t= 0 corresponds to 6

AM. Determine when the minimum traffic flow occurs.

Solution:

Let us find plot the graph of f(t)

463sage: var(’f,t’)
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464(f, t)

465sage: f(t)= 20*t-40* sqrt(t)+50

466sage: g=plot(f(t),t,0,4, figsize =3)
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Note from the plot above that the average speed is decreasing between 6 AM to 7 AM and increas-

ing after 7 AM.

At 6 AM the average speed is:

467sage: f(0)

46850

or 50 mph. At 7 AM the average speed is:

469sage: f(1)

47030

or 30 mph. To see how the average speed varies throughout the day we make a table of these values

at each half hour from 6 AM to 10 AM:

471sage: step=float (1/2)

472sage: initial=float (0)

473sage: table ([(i*step+initial ,n(f(i*step+initial),digits =4))

for i in [0..8]] , align=’left’)

4740.0 50.00
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4750.5 31.72

4761.0 30.00

4771.5 31.01

4782.0 33.43

4792.5 36.75

4803.0 40.72

4813.5 45.17

4824.0 50.00

We can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first

hour and then gradually increases back up to 50 mph during the next 3 hours. If we want to verify

that the minimum occurs at 7 AM (or t = 1), we can use calculus. Since extrema occur where the

derivative is 0, we set the derivative equal to zero and solve for t:

483sage: solve(diff(f(t),t)==0,t)

484[

485t == 1

486]

Therefore the minimum does occur when t = 1 (at 7 AM) and from the table we see that the

minimum average speed at this time is 30 mph.

4.3.2 Minimum Cost

Example 4.3.2. Imagine there is an island locate at (0,1500) and a mainline electronic connection

point at (5000,0 where the unit is in meter. What would be the cheapest way to connect the island

and mainland if the cost to lay cable underwater is 36 and on land is 24? We can lay cable under-

water from (1500,0) to (x,0) and then lay cable on land from (x,0) to (5000,0). The variable x

can vary between 0 and 5000. What value of x would minimize the cost for laying this cable and

what would that minimum cost be?
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Solution:
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First, we need to determine the cost. There are two parts: the underwater part and the overland

part. The cost of underwater part called c1 is $36 times the distance d1 from (0,1500) to (x,0):

487sage: var(’x,c1’)

488(x, c1)

489sage: c1(x)=36* sqrt (1500^2+x^2)

The overland cost called c2 is $24 times the distance d2 from (x,0) to (5000,0):

490sage: var(’x,c2’)

491(x, c2)

492sage: c2(x)=24*(5000 -x)

The total cost is:

493sage: var(’x,cost’)

494(x, cost)

495sage: cost(x) = c1(x)+c2(x)

496sage: cost(x)

497-24*x + 36* sqrt(x^2 + 2250000) + 120000

We need to minimize this cost function. First, we graph it to see if it has a minimum:



4.3. OPTIMIZATION 83

498sage: g=plot(cost(x),x,0,5000, ymin =150000 , ymax =220000 , figsize

=3)
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Notice that this cost function has its minimum somewhere between 1000 and 2000. Also, we

will note that as x gets close to that minimum the tangent lines of cost(x) are getting close to

horizontal. In other words, the minimum will occur at a point x for which the derivative is zero or

horizontal. This is a calculus problem that we can solve.

Also notice that in this particular problem, solve command will not evaluate the solution. We have

to use find−root to numerically approximate the solution:

499sage: var(’c’)

500c

501sage: c=find_root(diff(cost(x)) ,0,10000)

502sage: c

5031341.6407865

504sage: n(cost(c))

505160249.223594996

The minimum occurs at x= 1341.64 meters and minimum cost is approximately $160,250
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4.3.3 Packaging (Minimum Surface Area)

Example 4.3.3. The cost of packaging in business is related to the surface area of the package.

Minimizing the surface area will minimize the cost. Assuming that a Sumsung has a refrigerator

product that needs to be packaged in a rectangular box having a square base. If the volume of

the box is required to be 2 cubic meter, then find the dimensions of the box that will minimize its

surface area.

Solution:

Let sides of the square base is x and the height of the box is y, then the volume of the box is given

by x2y and must equal 2 cubic meters.

506sage: var(’x,y,S’)

507(x, y, S)

508sage: constraint=x^2*y==2

The surface area of the box is S= 4xy+2x2 and is the quantity that must be minimized, where the

area of top and bottom sides are x2 and the 4 sides each have area xy. Using our volume constraint,

x2y= 2, we can solve for y in terms of x:

y=
2
x2

509sage: sol=solve(constraint ,y)

510sage: sol

511[

512y == 2/x^2

513]

The surface area function can then be expressed as a function of x only:

S(x) = 4xy+2x2 = 4x(2/x2)+2x2 = 8/x+2x2
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514sage: S(x)=(4*x*y+2*x^2).substitute(y==sol [0]. rhs())

515sage: S(x)

5162*x^2 + 8/x

Again, we use the idea that extrema occur at points where the derivative is zero, we have:

517sage: solve(diff(S(x),x)==0,x)

518[

519x == 1/2*I*sqrt (3) *2^(1/3) - 1/2*2^(1/3) ,

520x == -1/2*I*sqrt (3) *2^(1/3) - 1/2*2^(1/3) ,

521x == 2^(1/3)

522]

This equation has 1 real and 2 imaginary solutions. We need only the real solution of x= 21/3. We

compare with the plot to see the actual minimum:

523sage: g=plot(S(x),x,0,10,ymin=0,ymax =100, figsize =3)
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Alternatively, we could have used the second derivative test to show that a minimum occurs at

x= 21/3:

524sage: (diff(S(x),x,2)).substitute(x==2^(1/3))

52512

Since f ′′(21/3) > 0, we know that the graph is concave up at x = 21/3 and hence must have a
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minimum there. Since y = 21/3 when x = 21/3, we conclude that the box with minimum surface

area is a 2 cube meters with sides of 21/3 meters.

4.3.4 Maximize Revenue

Example 4.3.4. Suppose a travel agency charges 500 per person for a charter flight if exactly 80

people sign up. However, if more than 80 people sign up, then the fare is reduced by 2 per person

for each additional person over the initial 80. The travel agency wants to know how many people

they should book to maximize revenue. Also, determine what that maximum revenue is and what

the corresponding fare is for each person.

Solution:

Let x denotes the number of passenger above 80 and the revenue is the product of the number of

people multiplied by the cost (fare) per person. If R(x) is defined as the revenue function, then

R(x) = (80+ x)(500− 2x). We want to determine the maximum value of R(x) for x > 0. Let

consider the graph:

526sage: var(’x,R’)

527(x, R)

528sage: R(x)=(80+x)*(500 -2*x)

529sage: g=plot(R(x),x,0,200, ymin =40000 , ymax =60000 , figsize =3)
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From the plot above, we see that a maximum occurs at about 80 to 90. To confirm this, we first
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solve for the critical points:

530sage: solve(diff(R(x),x)==0,x)

531[

532x == 85

533]

Therefore the maximum does indeed occur at x= 85, and the maximum revenue is:

534sage: R(85)

53554450

or $54450. Since 80+x represents the number of customers, this occurs when 165 customers sign

up for the flights. In this case, the cost per person is:

536sage: (500 -2*x).substitute(x==85)

537330

or $330 per person.

4.4 Newton’s Method

4.4.1 Programing Newton’s Method

Newton’s Method is a technique for calculating zeros of a function based on the direction of its

tangent lines (hence, it requires first derivative). It is a recursive routine. tedious to do by hand and

easily to make mistake. However, it is simple to handle with Sage. We need initial guess value

to start with or in other word, we need to guess where to solution’s location is. This is because an

initial approximation x0 for that zero, say at x= r, is needed to start the recursion. For example, we

can specify x0 by examining the graph of the function to see where the zeros are approximately.

Then the next approximation x1 can be found by the recursive formula x1 = x0 − f(x0)/f
′(x0).
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This process can be iterated using the general formula:

xn+1 = xn−
f(xn)

f ′(xn)

Under suitable conditions, the sequence of approximation {x0,x1,x2, ..., } (called Newton sequence)

will converge to r. However the Newton Method does not guarantee the convergent, if the initial

guess is not good (or not close enough to the zero) then it will diverges, meaning we will not able

to find the solution.

Example 4.4.1. Approximate the zeros of the function f(x) = ln(6−x2)−x.

Solution:

538sage: var(’x,f’)

539(x, f)

540sage: f(x)=log(6-x^2)-x

541sage: g=plot(f(x),x,0,4,ymin=-5,ymax=5,figsize =3)
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Clearly, there is one zero between 1 and 1.5 based on the graph above. To approximate this zero,

we define a function newtn to perform the recursion:

542sage: var(’x,newtn’)

543(x, newtn)
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544sage: newtn(x)=x-f(x)/(diff(f(x)))

To generate the corresponding Newton sequence, we compute 8 iterates of this function starting

with an initial guess of x= 1.5.

sage : xzero=float(15/10)

sage : for i in range(8):

· · ·· : xzero=newtn(xzero)

· · ·· : print xzero

1.4009754666568441

1.3977834736657635

1.3977805354266575

1.3977805354241768

1.397780535424177

1.3977805354241768

1.397780535424177

1.3977805354241768

Hence, if we stop at 6 decimal spaces then the zero of f(x) = ln(6−x2)−x is 1.397780.

4.4.2 Divergence

As mention earlier, Newton’s Method does not alway work. For instance, the function y = x1/3

clearly has a root at x= 0:

545sage: g=plot(x^(1/3) ,x,0,1,figsize=3,ymin=0,ymax =1)
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Yet, Newton’s Method fails for any guess x 6= 0:

sage : f(x) = x1/3

sage : newtn(x)=x-f(x)/(diff(f(x)))

sage : xzero=float(5/10)

sage : for i in range(8):

· · ·· : xzero=newtn(xzero)

· · ·· : print xzero
−1.0

2.0

−4.0

8.0

−16.0

32.0

−64.0

128.0

4.4.3 Slow Convergence

Even when Newton’s Method works, sometimes the Newton sequence converges very slowly to

the zero. Consider the following function:
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546sage: var(’x,f’)

547(x, f)

548sage: f(x)=x^3-2*x-2

549sage: g=plot(f(x),x,-3,3,ymin=-20,ymax=5,figsize =3)
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Clearly, there is a root between 1.5 and 2. If we use the newtn function with out guess at x = 1,

we get quick convergence to root:

sage : f(x) = x3 −2∗x−2

sage : newtn(x)=x-f(x)/(diff(f(x)))

sage : xzero=float(1)

sage : for i in range(8):

· · ·· : xzero=newtn(xzero)

· · ·· : print xzero
4.0

2.8260869565217392

2.1467190137392356

1.8423262771400926

1.772847636439238

1.7693013974364495

1.7692923542973595
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1.7692923542386314

But if we choose our initial guess near 0.7, the convergence is much slower. (It took 20 iterations

to have the accuracy as the 8th iteration above).
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Integration

5.1 Antiderivatives (Indefinite Integral)

Integral(f(x),x) give the indefinite integral (or antiderivative) of f with respect to x. The com-

mand integral can evaluate all rational functions and a host of transcendental functions, including

exponential, logarithmic, trigonometric, and inverse trigonometric functions.

To integrate a function f(x,y) respects to x:

integral(f(x,y),x)

To integrate a f(x) over [a,b]:

integral(f(x,y),x,a,b)

Example 5.1.1. Evaluate
∫
(x3 −3x+2)dx

Solution:

550sage: integral(x^3-3*x+2,x)

5511/4*x^4 - 3/2*x^2 + 2*x

93
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Example 5.1.2. Evaluate
∫
x(x3 +2)2dx

Solution:

552sage: integral(x*(x^3+2)^2,x)

5531/8*x^8 + 4/5*x^5 + 2*x^2

Example 5.1.3. Evaluate
∫ 2x√

x+1
dx

Solution:

554sage: integral (2*x/(sqrt(x+1)),x).simplify_full ()

5554/3* sqrt(x + 1)*(x - 2)

Example 5.1.4. Evaluate
∫

2x2sin(x3)dx

Solution:

556sage: integral (2*x^2*sin(x^3),x)

557-2/3*cos(x^3)

Note: Sage can certainly integrate much more complicated functions, including those that may

require using any of the integration techniques discussed in your calculus textbook. We will con-

sider some of these in Section 5.4. Also note that Sage does not explicitly include the constant of

integration C in its answer. We should always assume that this is implicitly part of the answer.

5.2 Riemann Sums and the Definite Integral

Review of Riemann Sums: A partition of a closed interval [a,b] is a set P = {x0,x1, ...,xn} of

points of [a,b] such that

a= x0 < x1 < x2 < ...< xn = b
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Given a function f on a closed interval [a,b] and a partition P= {x0,x1, ...,xn} of the interval [a,b],

recall that Riemann sum of f over [a,b] relative to P is a sum of the form

n∑
i=1

f(x∗i )∆xi,

where ∆xi = xi−xi−1 and x∗i is an arbitrary point in the ith subinterval [xi−1,xi]. We assume that

∆xi = ∆x
b−a
n for all i. A Riemann sum is therefore an approximation to the area of the region

between the graph of f and the x-axis along the interval [a,b]. The exact area is given by the

definite integral of f over [a,b], which is defined to be the limit of its Riemann sums an n→∞
and is denoted by

∫b
a f(x)dx:

∫b
a
f(x)dx= lim

n→∞
n∑
i=1

f(x∗i )∆x.

This definite integral exists provided the limits exists. For a continuous function f, it can be shown

that
∫b
a f(x)dx exists.

5.2.1 Riemann Sum Using Left Endpoints

A Rieman sum of a function f relative to a partition P can be obtained by considering rectangles

whose heights are based on the left endpoint of each subinterval of P. This is done by setting

x∗i = xi = ai+(b−a)/n for i= 1, ...,n−1, so that the corresponding height of each rectangle is

given by f(xi). Let leftrs denotes the formula for a Riemann sum using left endpoint, we have:

558sage: a,b,nn,f,x,i,leftrs ,xstar=var(’a,b,nn,f,x,i,leftrs ,xstar

’)

559sage: f(x)=x

560sage: d=(b-a)/nn

561sage: xstar(i)=a+(i-1)*d

562sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)
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where f(x) is a function of x, nn is number of subinterval. (Since in Sage, n is a special function

so we avoid to use the same letter by indicate the number of subinterval by nn). Notice that as

i= 1, xstar= a implies the height is f(a) which correspond the left endpoint of the first rectangle.

Example 5.2.1. Let f(x) = x2 +1 on [0,2] and let P = 0,1/n,2/n, . . . ,(n−1)/n be a partition of

[0,2]

(a) Approximate
∫2

0 f(x)dx by computing the Riemann sum relative to P using the left endpoint

method.

(b) Plot the graph of f and the rectangles corresponding to the Riemann sum in part (a).

(c) Find the limit of the Riemann sum obtained in part (a) by letting n→∞
Solution:

(a)

563sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

564sage: d=(b-a)/nn

565sage: f(x)=x^2+1

566sage: xstar(i)=a+(i-1)*d

567sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

568sage: table ([(i,n(leftrs(0,2,i),digits =4)) for i in range

(10 ,110 ,10)], header_row =[’n’,’Riemann␣Sum’],frame=True)

569+-----+-------------+

570| n | Riemann Sum |

571+=====+=============+

572| 10 | 4.280 |

573+-----+-------------+

574| 20 | 4.470 |

575+-----+-------------+

576| 30 | 4.535 |
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577+-----+-------------+

578| 40 | 4.568 |

579+-----+-------------+

580| 50 | 4.587 |

581+-----+-------------+

582| 60 | 4.600 |

583+-----+-------------+

584| 70 | 4.610 |

585+-----+-------------+

586| 80 | 4.617 |

587+-----+-------------+

588| 90 | 4.622 |

589+-----+-------------+

590| 100 | 4.627 |

591+-----+-------------+

Thus
∫2

0(x
2 +1)dx≈ 4.627 for n= 100 (rectangles).

(b) Following plot represents a plot of the rectangles corresponding to the Riemann sum in part (a)

using left endpoint and n= 4
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(c) Evaluate leftrs in the limit as n→∞
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592sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

593sage: d=(b-a)/nn

594sage: f(x)=x^2+1

595sage: xstar(i)=a+(i-1)*d

596sage: leftrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

597sage: limit(leftrs(0,2,nn),nn=infinity)

59814/3

Thus,
∫2

0(x
2 +1)dx= 14/3

5.2.2 Riemann Sum Using Right Endpoints

We can similarly define a Riemann sum of f relative to a partition P by considering rectangles

whose height are based on the right endpoint of each subinterval P. Let rightrs denotes the

formula for a Rieman sum using right endpoint, we have:

599sage: a,b,nn,f,x,i,rightrs ,xstar=var(’a,b,nn,f,x,i,rightrs ,

xstar’)

600sage: f(x)=x

601sage: d=(b-a)/nn

602sage: xstar(i)=a+i*d

603sage: rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

Notice that as i = 1, xstar = a+d implies the height is f(a+d) which corresponds the right

endpoint of the first rectangle.

Example 5.2.2. Redo example 5.2.1 with right endpoint method.

Solution:

(a)
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604sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

605sage: d=(b-a)/nn

606sage: f(x)=x^2+1

607sage: d=(b-a)/nn

608sage: xstar(i)=a+i*d

609sage: rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

610sage: table ([(i,n(rightrs(0,2,i),digits =4)) for i in range

(10 ,110 ,10)], header_row =[’n’,’Riemann␣Sum’],frame=True)

611+-----+-------------+

612| n | Riemann Sum |

613+=====+=============+

614| 10 | 5.080 |

615+-----+-------------+

616| 20 | 4.870 |

617+-----+-------------+

618| 30 | 4.801 |

619+-----+-------------+

620| 40 | 4.768 |

621+-----+-------------+

622| 50 | 4.747 |

623+-----+-------------+

624| 60 | 4.734 |

625+-----+-------------+

626| 70 | 4.724 |

627+-----+-------------+

628| 80 | 4.717 |
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629+-----+-------------+

630| 90 | 4.711 |

631+-----+-------------+

632| 100 | 4.707 |

633+-----+-------------+

Thus
∫2

0(x
2 +1)dx≈ 4.707 for n= 100 (rectangles).

(b) The following is a plot of the rectangles corresponding to the Riemann sum in part (a) using

the right endpoint n=

0.5 1 1.5 2
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(c) Evaluate rightrs in the limit as n→∞
634sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

635sage: d=(b-a)/nn

636sage: f(x)=x^2+1

637sage: xstar(i)=a+i*d

638sage: rightrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

639sage: limit(rightrs (0,2,nn),nn=infinity)

64014/3
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5.2.3 Riemann Sum Using Midpoints

For midpoint method, the ith subinterval is given by x∗i = xi = a+(i+1/2)(b−a)/n. Letmidrs

denotes the formula for a Riemann sum using midpoint, we have:

641sage: a,b,nn,f,x,i=var(’a,b,nn,f,x,i’)

642sage: f(x)=x

643sage: d=(b-a)/nn

644sage: xstar(i)=a+(i-1/2)*d

645sage: midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

notice that as i= 1, xstar= a+(i−1/2)d implies the height is between f(a) (left endpoint) and

f(a+d) (right endpoint).

Example 5.2.3. Redo the example 5.2.1 with midpoint method.

Solution:

(a)

646sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

647sage: d=(b-a)/nn

648sage: f(x)=x^2+1

649sage: xstar(i)=a+(i-1/2)*d

650sage: midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

651sage: table ([(i,n(midrs(0,2,i),digits =4)) for i in range

(10 ,110 ,10)], header_row =[’n’,’Riemann␣Sum’],frame=True)

652+-----+-------------+

653| n | Riemann Sum |

654+=====+=============+
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655| 10 | 4.660 |

656+-----+-------------+

657| 20 | 4.665 |

658+-----+-------------+

659| 30 | 4.666 |

660+-----+-------------+

661| 40 | 4.666 |

662+-----+-------------+

663| 50 | 4.666 |

664+-----+-------------+

665| 60 | 4.667 |

666+-----+-------------+

667| 70 | 4.667 |

668+-----+-------------+

669| 80 | 4.667 |

670+-----+-------------+

671| 90 | 4.667 |

672+-----+-------------+

673| 100 | 4.667 |

674+-----+-------------+

Thus,
∫2

0(x
2 +1)dx≈ 4.666 for n= 30 (rectangles).

(b) The graph
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(c) Evaluatemidrs in the limit as n→∞
675sage: a,b,nn,f,x,i,leftrs ,xstar ,d=var(’a,b,nn,f,x,i,leftrs ,

xstar ,d’)

676sage: d=(b-a)/nn

677sage: f(x)=x^2+1

678sage: d=(b-a)/nn

679sage: xstar(i)=a+(i-1/2)*d

680sage: midrs(a,b,nn)=sum(f(xstar(i))*d,i,1,nn)

681sage: limit(midrs(0,2,nn),nn=infinity)

68214/3

5.3 The Fundamental Theorem of Calculus

The most important and elegant achievement in calculus is the Fundamental Theorem of Calcu-

lus (FTC), which demonstrate that integration and anti-differentiation are equivalent. It expressed

in two part:

Part I: Let f(x) is continuous on [a,b], we have:

b∫
a

f(x)dx= F(b)−F(a)
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where F(x) is any antiderivative of f(x).

Part II:

If F(x) =

x∫
a

f(t)dt , then F ′(x) = f(x)

Example 5.3.1. Evaluate
5∫
1

2x√
4x−1

dx

Solution:

683sage: integral ((2*x)/(sqrt (4*x-1)),x,1,2)

6845/6* sqrt (7) - 1/2* sqrt (3)

Example 5.3.2. Evaluate
2∫
√

3

√
3x2−2
2x dx

Solution:

685sage: integral ((sqrt(x^2-3))/(2*x),x,sqrt (3) ,2)

686-1/12* sqrt (3)*pi + 1/2

Example 5.3.3. Approximate
1∫
0
cotx2dx

Solution:

Here is an example of an integral that Sage cannot evaluate exactly but return unevaluated integral.

687sage: integral(tan(x^2),x,0,1)

688integrate(tan(x^2), x, 0, 1)

However, a numerical approximation is still possible by using n() command:

689sage: n(integral(tan(x^2),x,0,1))

6900.398414444597
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Example 5.3.4. Use the fact that if m 6 f(x) 6M ∀x ∈ [a,b], then m(b−a) 6
b∫
a
f(x)dx 6

M(b−a) to approximate
2∫
0

√
2x3 +1dx.

Solution:

We see that the function f(x) =
√

2x3 +1 is increasing on [0,2]. We can simply find f ′(x) and

observe that f ′(x)> 0 for all x.

691sage: g=plot(sqrt (2*x^3+1),x,0,2,figsize =3)

0 0.5 1 1.5 2
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3.5
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Thus, 1 = f(0)6 f(x)6 f(2) =
√

17 and therefore:

1(2−0)6

2∫
0

√
2x3 +1dx6

√
17(2−0)

2 6

2∫
0

√
2x3 +1dx6 2

√
17

Let Sage confirms this:

692sage: integral(sqrt (2*x^3+1) ,x,0,2)

693integrate(sqrt (2*x^3 + 1), x, 0, 2)

Since Sage dit not exactly evaluate it, we use the numerical approximation command n()

694sage: n(integral(sqrt (2*x^3+1),x,0,2))
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6954.03659298666

Example 5.3.5. Let f(x) = sin(x2) on [0,2] and define F(x) =
∫x

0 f(t)dt=
∫x

0 sin(t
2)dt.

(a) Plot the graph of f.

(b) Find the value’s of x for which F(x) starts to decrease.

Solution:

(a) Let plot the graph of f.

696sage: var(’f,t,g’)

697(f, t, g)

698sage: f(x)= sin(x^2)

699sage: g=plot(f(x),x,0,2, figsize =3)

0.5 1 1.5 2

-0.5

0.5

1

(b) We can see that the graph of f is above the x-axis (positive area) for x between 0 and π/2, and

below the x-axis for x between π/2 to 2. Thus, F begins to decrease at x= π/2.

5.4 Integration Techniques

In the text book, you will learn different technique to evaluate an integral. In Sage, we do not

need to specify the technique. Sage will automatically chooses an appropriate technique for the

problem. However, if the integrals which will not be able to evaluated in term of elementary, Sage

will return the integral unevaluated.
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Below, you will see some examples of integral that involves trigonometric functions, exponential,

and logarithmic functions. If you wish to solve them by hand, some of them will require integration

by part, partial fraction decompositions, or trigonometric substitutions.

Example 5.4.1. Evaluate
∫

x3

(x4+2)2dx

Solution:

If do it by hand, this integral involves using the substitution method.. Let u = x4 + 2, hence

du= 4x3dx:

∫
x3

(x4 +2)2dx=
1
4

∫
du

u2 =
1
4

∫
u−2du=

1
4
u−2+1

(−2+1)
=

1
4
u−1

−1
=−

1
4u

=−
1

4(x4 +2)

And by Sage command:

700sage: integral(x^3/(x^4+2) ^2)

701-1/4/(x^4 + 2)

Example 5.4.2. Evaluate
∫ 2x5+x2+x+1

x2−1 dx

Solution:

This integral requires long division and partial fraction decomposition to be solved by hand. Apply

long division, we have:

2x5 +x2 +x+1
x2 −1

= 2x3 +2x+1+
3x+2
x2 −1

= 2x3 +2x+1+
3x
x2 −1

+
2

x2 −1

Hence:

∫
2x5 +x2 +x+1

x2 −1
dx=

∫ [
2x3 +2x+1+

3x
x2 −1

+
2

x2 −1

]
dx=

∫
(2x3+2x+1)dx+

∫
3x
x2 −1

dx+

∫
2

x2 −1
dx
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(2x3 +2x+1)dx=

1
2
x4 +x2 +x∫

3x
x2 −1

dx=
3
2

∫
du

u
=

3
2
log(x2 −1) =

3
2
log(x−1)+

3
2
log(x+1)∫

2
x2 −1

dx=

∫
2

(x−1)(x+1)
dx=

∫ [
1

x−1
−

1
x+1

]
dx=

∫
1

x−1
dx−

∫
1

x+1
dx= log(x−1)− log(x+1)

Therefore

∫
2x5 +x2 +x+1

x2 −1
dx=

(
1
2
x4 +x2 +x

)
+

[
3
2
log(x−1)+

3
2
log(x+1)

]
+[log(x−1)− log(x+1)]

=
1
2
x4 +x2 +x+

5
2
log(x−1)+

1
2
log(x+1)

And by Sage command:

702sage: integral ((2*x^5+x^2+x+1)/(x^2-1))

7031/2*x^4 + x^2 + x + 1/2* log(x + 1) + 5/2* log(x - 1)

Example 5.4.3. Evaluate
∫
x4+2x3+3x+1

(x2+1)2 dx

Solution:

This integral involves long division, partial fraction decomposition, and inverse trigonometric fuc-

ntions.Apply long division, we have:

x4 +2x3 +3x+1
(x2 +1)2 = 1+

2x3 −2x2 +3x
x4 +2x2 +1

= 1+
2x3 +2x
x4 +2x2 +1

−
2x2

(x2 +1)2 +
x

(x2 +1)2

Hence:

∫
x4 +2x3 +3x+1

(x2 +1)2 dx=

∫ (
1+

2x3 +2x
x4 +2x2 +1

−
2x2

(x2 +1)2 +
x

(x2 +1)2

)
dx

For the first term of the right hand side:

∫
1dx= x (1)

For the second term of the right hand side, let u = x4 + 2x2 + 1⇒ du = (4x3 + 4x)dx = 4(x3 +



5.4. INTEGRATION TECHNIQUES 109

x)dx. Therefore:

∫ (
2x3 +2x
x4 +2x2 +1

)
dx=

2
4

∫
du

u
=

1
2
log(u) =

1
2
log(x2 +1)2 = log(x2 +1) (2)

For the third term, let x= tanθ⇒ x2 +1 = tan2θ+1 = sec2θ and dx= sec2θdθ. Hence:

∫ (
−

2x2

(x2 +1)2

)
dx=−2

∫
tan2θ

(sec2θ)2 sec2θdθ=−2
∫

tan2θ

sec2θ
dθ=−2

∫
sin2θdθ

=−2
∫

1− cos2θ
2

dθ=−θ+
1
2

sin2θ

1 2 3 4 5 6

1

2

3

4

5

x

√
x2 +1

1

theta

So:

∫ (
−

2x2

(x2 +1)2

)
dx=−θ+

1
2

sin2θ=−arctanx+ sinθcosθ=−arctanx+
x√
x2 +1

1√
x2 +1

=−arctanx+
x

x2 +1
(3)

For the fourth term, let v= x2 +1⇒ dv= 2xdx. So:

∫
x

(x2 +1)2dx=
1
2

∫
dv

v2 =
1
2

∫
v−2dv=−

1
2v

=−
1

2(x2 +1)
(4)
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From (1), (2), (3), and (4):

∫
x4 +2x3 +3x+1

(x2 +1)2 dx= x+ log(x2 +1)− arctanx+
x

x2 +1
−

1
2(x2 +1)

= x+ log(x2 +1)− arctanx+
2x−1

2(x2 +1)

Or by Sage command:

704sage: integral ((x^4+2*x^3+3*x+1)/(x^2+1) ^2)

705x + 1/2*(2*x - 1)/(x^2 + 1) - arctan(x) + log(x^2 + 1)

Example 5.4.4. Evaluate
∫

2x2cos(x)dx

Solution:

This integral requires integration by part technique. Letu= x2⇒du= 2xdx and dv= cos(x)dx⇒

v= sin(x). Hence ∫
2x2cos(x)dx= 2

(
x2sin(x)−

∫
sin(x)2xdx

)
We again apply the integral by part method on

∫
2xsin(x)dx. Let u1 = x⇒ du1 = dx and dv1 =

sin(x)dx⇒ v1 =−cos(x). Therefore

∫
2x2cos(x)dx= 2

(
x2sin(x)−

∫
sin(x)2xdx

)
= 2

[
x2sin(x)−2

(
−xcos(x)+

∫
cos(x)dx

)]
= 2x2sin(x)+4xcos(x)−4sin(x) = 4xcos(x)+2sin(x)(x2 −2)

And by Sage command:

706sage: integral (2*x^2*cos(x))

7074*x*cos(x) + 2*(x^2 - 2)*sin(x)

Example 5.4.5. Evaluate
∫

−4√
1−x2dx

Solution:
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This integral involves trigonometric substitution.Let x= sinθ⇒ dx= cosθdθ. Hence

∫
−4√
1−x2

dx=−4
∫

dx√
1−x2

=−4
∫

cosθdθ√
cos2θ

=−4
∫
dθ=−4θ=−4arcsinx

By Sage command:

708sage: integral (-4/( sqrt(1-x^2)))

709-4*arcsin(x)

Following are some examples of integrals that are important in applications but do not have an el-

ementary antiderivative. The integral does not have closed-form expression ,i.e., the antiderivative

can not be expressed in term of elementary functions (such as polynomial, logarithm, exponential,

trig functions). For instance, this integral contain an error function erf- a special non-elementary

function:

710sage: integral(sin(x^2))

7111/16* sqrt(pi)*((I + 1)*sqrt (2)*erf ((1/2*I + 1/2)*sqrt (2)*x) +

(I - 1)*sqrt (2)*erf ((1/2*I - 1/2)*sqrt (2)*x) - (I - 1)*sqrt

(2)*erf(sqrt(-I)*x) + (I + 1)*sqrt (2)*erf((-1) ^(1/4)*x))

Notice how Sage returns the answer in terms of imagination numbers.

712sage: integral(e^(-x^2))

7131/2* sqrt(pi)*erf(x)

Where erf is an error function. It plays an important role in physics and engineering.

714sage: integral(sin(x)/x)

715-1/2*I*Ei(I*x) + 1/2*I*Ei(-I*x)

However, we can use n() to evaluate these integrals over any finite interval. For example:

716sage: n(integral(e^(-x^2),x,0,10))
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7170.886226925452758

718sage: n(integral(log(x)/x,x,2,50))

7197.41173549054043



Chapter 6

Applications of the Integral

6.1 Area Between Curves

First, let us consider the problem of finding the area between two curves.

Example 6.1.1. Determine the area of the region bounded between the curves f(x) = 1
2sin(x) and

g(x) = csc2(x) on [π/4,π/2]

Solution:

We first plot graphs of f and g.

720sage: f(x)= 1/2* sin(x)

721sage: g(x)=csc(x)^2

722sage: h=plot((f(x),g(x)),x,pi/4,3*pi/4,figsize=3,fill=True)
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Recall that csc(x) is greater than 1 in this interval. Hence, csc2(x) is greater than sin(x) since

−1 6 sin(x)6 1. Therefore, to calculate the area between f(x) and g(x) on this interval is:

723sage: integral(g(x)-f(x),x,pi/4,3*pi/4)

724-1/2* sqrt (2) + 2

Example 6.1.2. Determine the area of the region enclosed between the curves f(x) = 2x(x2−4x+

2) and g(x) = x2

Solution:

725sage: f(x)=2*x*(x^2-4*x+2)

726sage: g(x)=x^2

727sage: h=plot((f(x),g(x)),x,-2,6,figsize=3,ymin=-10,ymax =20)
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The bounded region between the two curves seems to be at 0, 1/2 and 4. To make sure this, we

solve for the intersection points:

728sage: solve(f(x)==g(x),x)

729[

730x == 4,

731x == (1/2) ,

732x == 0
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733]

Hence, the intersection points are at x = 0,1/2,4. Notice that f(x) is greater than g(x) on [0,1/2]

and g(x) is greater than f(x) on [1/2,4]. Therefore the area enclosed between those curves is:

734sage: integral(f(x)-g(x),x,0 ,1/2) + integral(g(x)-f(x),x

,1/2 ,4)

735517/16

Example 6.1.3. Determine the area of the region bounded between the curves f(x) = |2x| and

g(x) = sin(x) on [−π/2,π/2]

Solution:

First we plot the graph:

736sage: f(x)= abs (2*x)

737sage: g(x)=cos(x)

738sage: h=plot((f(x),g(x)),x,-pi/2,pi/2,figsize=3,fill=True)
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From the graph, we will need to consider three separate areas. Note that the command solve does

not work here because it is only able to solve algebraic equations. Instead, we use the find−root

command to solve the equation f(x)−g(x) = 0, providing the interval where the root could be

found.

739sage: find_root(f(x)-g(x) ,0,1)
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7400.450183611295

Thus the approximately root is a= 0.45018. By symmetry, we have another root at a=−0.45018.

Therefore, the area between these two functions is the sum of three integrals:

741sage: a=float (45/100)

742sage: n(integral(f(x)-g(x),x,-pi/2,a)+integral(g(x)-f(x),x,-a,

a)+integral(f(x)-g(x),x,a,pi/2))

7433.39973326876714

The area of the bounded region is 3.3997.

6.2 Average Value

Recall that the average value of a function f(x) on [a,b] is defined as:

fave =
1

b−a

b∫
a

f(x)dx

Also, remember that The Mean Value Theorem for Integrals state that for any continuous functions

on [a,b] there exists a value c ∈ [a,b] such that:

f(c) = fave

Example 6.2.1. Let f(x) = 3sin(x)−x

(a) Find the only positive root α of f.

(b) Calculate the average value of f on [0,α].

(c) Determine a value c that satisfies the Mean Value Theorem for Integral on [0,α].

Solution:

(a) Draw the graph:
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744sage: f(x)=3*sin(x)-x

745sage: h=plot(f(x),x,-3,3,figsize =3)
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Then use find−root command with the interval [2,3] as our initial guess:

746sage: find_root(f(x) ,2,3)

7472.27886266008

Therefore α= 2.27886 accurate to 5 decimal places.

(b) We calculate the average value of f on [0,α]:

748sage: alpha=float (227886*(10^( -5)))

749sage: fave =1/( alpha -0)*integral(f(x),x,0,alpha)

750sage: fave

7511.033188037358966

Thus, the average value is approximately fave = 1.033188.

(c) By Mean Value Theorem of Integrals, there exists a value c ∈ [0,α] such that f(c) = fave. We

can solve for c by this equation:

752sage: var(’c,x’)

753(c, x)

754sage: find_root(f(c)-fave ,0,1)

7550.559759684314
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6.3 Volume of Solids of Revolution

Recall the definition to evaluate the integral:

b∫
a

f(x)dx= lim
n→+∞[

n∑
i=1

f(x∗i )∆xi]

Other important application of the definite integral involves finding the volume of a solid of revo-

lution, that is, a solid obtained by revolving a region in the plane about one of the x or y axes.

6.3.1 The Methods of Discs

Suppose we have y = f(x), y = 0, and two vertical lines x = a and x = b. Let S be a solid of

revolution obtained by revolving the region bounded by y about the x-axis. To obtain the volume

of S, we can approximate S by discs, that is, the cylinder obtained by revolving each rectangle,

constructed by a Riemann sum of f relative to a partition P = (x0,x1,x2, ...,xn) of [a,b], about the

x-axis. Let the radius of the cylinder be R, the height is h, then the volume is:

V = πR2h

it means that the volume of the ith cylinder which corresponding to the ith rectangle is Vi =

π[f(x∗i )]
2∆x. So, an approximation to the volume of S is given by the Riemann sum:

Vol(S)≈
n∑
i=1

Vi = π

n∑
i=1

[f(x∗i )]
2∆x

As n→∞, we obtain the exact volume of S:

Vol(S) = π lim
n→∞

n∑
i=1

[f(x∗i )]
2∆x= π

b∫
a

[f(x)]2dx



6.3. VOLUME OF SOLIDS OF REVOLUTION 119

Notice that if the region is revolved about the y-axis then the volume of S is:

Vol(S) = π

d∫
c

[f(y)]2dy

Example 6.3.1. Find the volume of the solid of revolution obtained by rotating the region bounded

by the graph of f(x) =
√
x+1, the x-axis, and the vertical line x= 2

Solution:

756sage: var(’u’)

757u

758sage: f(u)=sqrt(u+1)

759sage: h=plot(f(u),u,0,2, figsize=3,fill=True)
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The plot show our region shaded in gray. Now, we rotate this shaded region about the x-axis to

obtain a solid of revolution. In Sage, we use the revolution−plot3d(f(x),x,a,b) command which

generates a surface if revolution with radius f at height x

760sage: s=revolution_plot3d(f(u) ,(u,0,2), show_curve=True ,

opacity=7, parallel_axis=’x’ ).show(aspect_ratio =(1,1,1))
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761sage: pi*integral(f(u)^2,u,0,3)

76215/2*pi

6.3.2 The Method of Washers

If a solid of revolution S is generated by revolving a region bounded between two different curves

f(x) and g(x) on [a,b] about the x-axis, we use washer method. The corresponding volume of S

is given by:

Vol(S) = π

b∫
a

[g(x)]2 −[f(x)]2dx

given that g(x)> f(x).

Example 6.3.2. Find the volume of the solid generated by revolving about the x-axis the region

enclosed by y= 2x2 +1 and y= x+2.

Solution:

763sage: var(’u’)
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764u

765sage: f(u)=2*u^2+1

766sage: g(u)=u+2

767sage: h=plot((f(u),g(u)),u,-2,2,figsize=3, ymin=0,ymax=5,fill=

True)
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We need the intersection points:

768sage: solve(f(u)==g(u),u)

769[

770u == 1,

771u == (-1/2)

772]

We can easily verify that the intersection points are (−1/2,3/2) and (1,3). If we let S be the solid

obtains by rotating the region between f(x) and g(x) on [−1/2,1] about the x-axis, then it can be

view as the difference of the solid F obtains by rotating f(x) and the solid G obtains by rotating

g(x) on that same interval:

773sage: var(’u,F’)

774(u, F)

775sage: f(u)=2*u^2+1



122 CHAPTER 6. APPLICATIONS OF THE INTEGRAL

776sage: F=revolution_plot3d(f(u) ,(u,-1/2,1), show_curve=True ,

opacity=7, parallel_axis=’x’ )

777sage: var(’u,G’)

778(u, G)

779sage: g(u)=(u+2)

780sage: G=revolution_plot3d(f(u) ,(u,-1/2,1), show_curve=True ,

opacity=7, parallel_axis=’x’ )
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781sage: S=G+F

782sage: S.show()

783None

Since the curve f(x) is lower than g(x), the volume of S is given by:

784sage: pi*integral ((g(u)^2-f(u)^2),u,-1/2,1)
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78581/20* pi

6.3.3 The Method of Cylindrical Shells

Another approach to finding the volume of a solid of revolution is to approximate it using cylindri-

cal shells. Recall that with dish method or washers method, we rotate the function on an interval

around an axis. In cylindrical shells method, we rotate the rectangular of area whose height is

paralell to the axis of rotation.

A cylindrical shell is defined as a solid generated by two cylinders having the same axis of rotation.

Suppose a cylindrical shell has an inner redius r1 and outer radius of r2 with altitude h, then the

volume is defined as:

Vol= π r2
2 h−π r

2
1 h= 2 π r̄ h ∆x

where r̄= r1+r2
2 : the average of radius and ∆x= r2 − r1

Assume we have a function f(x) defined on x = a and x = b. Let S is the solid obtain by ro-

tate the region between f(x), x-axis, a and b about y-axis. Then the volume of ith shell is the

corresponding ith rectangle and defined as:

Voli = 2 π x∗i f(x
∗
i ) ∆x

where x∗i = (xi−xi−1)/2. Therefore:

Vol(S)≈
n∑
i=1

Voli = 2 π
n∑
i=1

x∗I f(x
∗
I ) ∆x

As n→∞, we obtain the exact volume of S:

Vol(S) = 2 π lim
n→∞

n∑
i=1

x∗I f(x
∗
I ) ∆x= 2 π

b∫
a

x f(x) dx
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Similarly, if the region is rotated about the x-axis then the volume of S is given by:

Vol(S) = 2 π

d∫
c

y f(y) dy

Example 6.3.3. Consider the region bounded by the curve y = x2 + 1, the x-axis, and the line

x = 3. Find the volume of the solid generated by revolving this region about the y-axis using the

method of cylindrical shells.

Solution:

786sage: var(’u,f’)

787(u, f)

788sage: f(u)=u^2+1

789sage: h=plot(f(u),u,0,3, figsize=3,fill=True)
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We then revolve this shaded region about the y-axis to obtain the solid S. Let Q be the cylinder

when we rotate x = 3 and P the paraboloid of rotating f(x) about y-axis, then S can be seen as Q

with P removed from it:

790sage: var(’u,P’)

791(u, P)

792sage: f(u)=u^2+1
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793sage: P=revolution_plot3d(f(u) ,(u,0,3), show_curve=True ,

opacity =7)

794sage: var(’u,Q,f’)

795(u, Q, f)

796sage: Q=revolution_plot3d ((3,f) ,(f,0,10), show_curve=True ,

opacity =7 )
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797sage: S=P+Q

The volume of S is given by:

798sage: f(u)=u^2+1

799sage: 2*pi * integral(u*f(u),u,0,3)

80099/2*pi

Note: The volume in this example can be found by washer method:

f(u) = u2 +1⇔ u=
√
f(u)−1

u= 0⇒ f(u) = 1, u= 3⇒ f(u) = 10

where the volume is the sum of rotating the region between x = 3 and x =
√
y−1 and the region

between x= 3 and x= 0.

801sage: var(’y’)

802y

803sage: pi*integral ((9-(y-1)),y,1 ,10)+pi*integral(9,y,0,1)
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80499/2*pi

Those answers agree to each other as they suppose to be.

Example 6.3.4. Sketch the ellipse x2

a2 +
y2

b2 = 1 and find the volume of the solid obtained by revolv-

ing the region enclosed by the ellipse about the x-axis.

Solution:

805sage: x,y=var(’x,y’)

806sage: a=1

807sage: b=2

808sage: h=implicit_plot(x^2/a^2+y^2/b^2==1 ,(x,-a-1,a+1) ,(y,-b-1,

b+1),figsize =3)
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To plot the corresponding solid of revolution ellipsoid, we first solve the equation x2

a2 +
y2

b2 = 1 for

y

809sage: var(’a,b’)

810(a, b)

811sage: sol=solve(x^2/a^2+y^2/b^2==1,y)

812sage: sol

813[
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814y == -sqrt(a^2 - x^2)*b/a,

815y == sqrt(a^2 - x^2)*b/a

816]

The positive and negative of y above correspond for the upper haft and lower haft of the ellipse.

Let consider the upper haft in plotting and computing the volume of the ellipse. Define:

f(x) =

√
b2 −

b2x2

a2 = b

√
1−

x2

a2

817sage: f(x)=sol [1]. rhs()

818sage: f(x)

819sqrt(a^2 - x^2)*b/a

820sage: f(x)=f(x).substitute(a=1,b=2)

821sage: S=revolution_plot3d(f(x) ,(x,-1,1), show_curve=True ,

opacity=7, parallel_axis=’x’ )

Since the ellipsoid is defined on the interval [−a,a], its volume S based on the disc method is:

822sage: pi*integral(f(x)^2,x,-1,1)
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82316/3*pi

In general, the volume of the ellipsoid for arbitrary positive a and b is:

824sage: var(’a,b,x,y’)

825(a, b, x, y)

826sage: F(x)=sol [1]. rhs()

827sage: pi*integral(F(x)^2,x,-a,a)

8284/3*pi*a*b^2

Thus,

Vol=
4
3
πab2

Notice that if a = b, then the ellipsoid becomes a sphere and the volume will be Vol = 4
3πa

3

where a is the radius of the sphere.
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Appendix A

Common Mathematical Operations

Operation Traditional Notation Sage Notation

Define a function f(x) = x2 f(x) = x∧2

Evaluate a function f(1) f(1)

Square root
√
f(x) sqrt(f(x))

Absolution value |f(x)| abs(f(x))

Limit limx→a f(x) limit(f(x),x= a)

Derivative f ′(x) diff(f(x),x)

Second derivative f ′′(x) diff(f(x),x,2)

Indefinite integral
∫
f(x)dx integral(f(x),x)

Exact definite integral
b∫
a
f(x)dx integral(f(x),x,a,b)

Approximate integral
b∫
a
f(x)dx n(integral(f(x),x,a,b),digits= 2)

Pi π pi

Euler number e e

Imaginary number i i

Infinity ∞ infinity

Cosine function cosx cos(x)

Inverse cosine function arccosx or cos−1x arccos(x)

Exponential function ex exp(x) or e∧2

Natural logarithm (base e) lnx log(x)



Appendix B

Useful Commands for Plotting and Algebra

Description Sage Command

Plot a function f(x) over interval [a,b] plot(f(x),x,a,b)

Plot contour of f(x,y) on [a,b]x[c,d] contour−plot(f(x,y),(x,a,b),(y,c,d))

Plot an ellipse has center at (x0,y0) with radii r1,r2 ellipse((x0,y0),r1,r2)

Solve equation f(x) = g(x) for x solve(f(x)==g(x))

Reduce expression to most simple (expression).simplify.full()

Numerical approximation of a quantity n(expression) expression

137
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