Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2020

Solutions to Assignment #3
Exponential and Differential

Just in case you haven’t seen it before, or have forgotten about it, the notation n! is
a shorthand for the product of the first n positive integers, that is:

nl=n-(n—1)-(n—-2)---3-2-1

Thus 1!=1,21=2-1=2,31=3-2-1=6,41=4-3-2-1= 24, and so on. n! grows very

quickly, faster than any exponential function with a constant base. (Stirling’s Formula
n

tells us that when n is large, n! is approximately v2n - n—n)

This notation is extended to n = 0 by defining 0! = el. This is mainly done to make
various general formulas and expressions involving n! (including the sum in question 2
below) behave nicely when n = 0. One could also justify this by observing that n! counts
the number of ways one can arrange n distinct objects in a row, and that there is only one
way of arranging no objects at all ...
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1. Suppose y = f(x) satisfies the equation d_y = y. Show that f(z) = Ke® for some
x

constant K. [5]
SOLUTION. First, note that y = f(x) = 0 for all = is a solution to the given differential
equation because -£0 = 0. Then f(z) = Ke® = 0e® = 0 for K = 0.

Now suppose that y = f(x) is differentiable and not equal to 0 for some value(s) of x.
At least for such values, we can then rearrange the differential equation as follows,

dy 1 dy
A — — .2 =1
de Y y dx ’

and then compute the antiderivative of both sides. The right-hand side is easy: [1dx =
x 4+ C by the Power Rule.
For the left-hand side, a quick and dirty approach would be to do the following:

1 dy 1
——dr= | —dy=1 B
/ydmx/yy n(y) +
(We use B because we've already used C for the generic constant of integration on the

d
right-hand side.) This is one of those cases where one gets away with treating d_y as if it
x

were really a fraction.
A nominally more careful (and mathematically respectable :-) approach would be to

treat this as an opportunity for a trivial subsitution u = y, so du = d_y dx:
x

1 dy 1
/5.%dx_/adu—ln(u)—f—B—ln(y)‘f‘B



Respectably or otherwise, we have arrived at In(y)+ B = x+ C. Solving this equation
for y yields:

In(y)+B=x+C = In(y) =2 +C — B = y =W = @#0-8 _ OBz

Setting K = e“~5 means that y = f(z) = Ke® has the desired form. Note that making
K = —e®~B works too, since the negative sign will pass through the derivative and hence
appear on both sides of the differential equation. (Alternatively, one could exploit the fact

that In (]y|) is a more general antiderivative of — and eventually get K = +e“~5.)

Y
Thus, whether or not y = f(x) is always 0, if it is a solution of the differential equation

d
d_y =y, we must have y = f(x) = Ke® for some constant K. [J
x
0 " 1'2 ZL'3
2. Suppose f(x Z i 1+x+7+ F+ Use 1 (and just a bit more) to show
n=0
that f(z) =e®. [5]

’I’L
NoOTE. For the sake of this assignment, you may assume that the sum Z — makes sense

n= O
no matter what the value of x is. We’ll see exactly what this means and how to check it

is so later in the course. For now, just think of the sum as a polynomial of infinite degree.

SOLUTION. One thing we can do with polynomials is differentiate them term-by-term. Fol-
lowing the hint and thinking of the series as a polynomial of infinite degree, we differentiate
it term-by=term too:
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Thus y = f(z) is equal to its derivative, i.e. d_y =y, so 1 tells us that f(z) = Ke® for
x

on 02 3
some constant K. Since f(0) = Z =140+ —=+—+---=140=1 (however many
—~ n! 2 6
0s you add, you're not going to get much :-), it follows that K = K -1 = Ke" = f(0) = 1.
X n 2 3
Thus f(z) = e, i.e. emznz:% :1+x+%+%+---, as desired. B



