Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Summer 2020

Solutions to Quiz #6

We know from lecture that the Taylor series at 0 (otherwise known as the MacLaurin
series) of cos(x) is
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1. As was done in the lecture for cos(x), use Taylor’s formula to find the Taylor series at

0 of sin(z) and determine its interval of convergence. [2.5]

SOLUTION. We grind out the derivatives at 0 of f(x) = sin(z) and look for a pattern to
plug into Taylor’s formula:

no @) Fm0)
0 sin(x) 0
1 cos(x) 1
2  —sin(z) 0
3 —cos(x) -1
4 sin(x) 0
5 cos(z) 1
6 —sin(x) 0
7 —cos(x) -1
8  sin(x) 0

At all even n, we have (™ (0) = 0; at odd values of n, say n = 2k +1 where k > 0, we have
fM0)=1ifk=0,2,4,... and f™(0)=—-1ifk=1,3,5,..., i.e. fCHFD(0) = (=1).
It follows that the Taylor series at 0 of f(x) = sin(z) is:
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It remains to determine the the interval of convergence of this series. As usual we
appeal to the Ratio Test first:
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Since, no matter what value x has, we get a limit of in the Ratio Test and 0 < 1, the
series converges for all z, i.e. the interval of convergence of this series is (—o0, c0). O

2. Find the Taylor series at 0 of sin(z) without (directly) using Taylor’s formula. [1/

SOLUTION. Since antiderivative of cos(x) is sin(z), it follows that the antiderivative of the
Taylor series at 0 for cos(z) is (up to a constant) the Taylor series at 0 for sin(x):
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The constant of integration, C', can be solved for because the function sin(z) and its
Taylor series at 0 must equal each other at x = 0:
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3. Find the Taylor series at 0 of f(x) = sin(z) + x cos(x). [1.5]

SOLUTION. Recall that if we have a power series at a equal to a function, that power series
is the Taylor series at a of the function. Since we know the Taylor series at 0 of sin(z)
and cos(x), and these series are equal to the functions they came from when they converge
(like most Taylor series), the Taylor series at 0 of f(x) = sin(x) + x cos(x) is given by:

f(x) = sin(x) + = cos(x)
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