Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Summer 2020

Solutions to Quiz #4
Tuesday, 14 July.
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Consider the region between y = 1/1 — % and y = —/1 — %, where 0 < x < 2.
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(This is the right half of the region enclosed by the ellipse % +y? = 1.) Revolve this

region about the y-axis. The resulting solid of revolution is an “oblate spheroid” and looks
like something like a squashed sphere.

1. Compute the volume of this oblate spheroid. [5/

SOLUTION. (Cylindrical Shells) If we use the method of cylindrical shells to compute the
volume of this solid of revolution, the shells will be open cylinders with axis of symmetry
the y-axis. The shells will therefore run parallel to the y-axis and perpendicular to the
x-axis, so we will use x as our variable. Consider the shell that passes through z:
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This shell has radius r = # — 0 = 7 and height h = upper — lower = /1 — % —

— ﬁ = 2¢/1— f From the original region, the range of x is 0 < o < 2. It

follows that the volume of the solid is given by:

2 2 2 Substitute u = 1 — %, so du = —3 dx
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(Disks/Washers) If we use the disk/washer method to compute the volume of this solid
of revolution, the disks will be centered at and stacked along the y-axis. The disks will
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therefore be parallel to the x-axis and perpendicular to the z-axis, so we will use y as

our basic variable. Note that in the original region, y runs from — —® = 1 to

1
\J1— % = 1. Consider the disk at y:

The radius of the disk at y is r = z — 0 = x for the x obtained by solving % +y2 =1
for z in terms of y: 22 = 4 —4y? sor = z = /4 —4y? = 24/1 —y2. (We ignore the
negative root, since x > 0 in the original region. Besides, a radius ought to be positive...)
It follows that the volume of the solid is given by:
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2. Compute the surface area of this oblate spheroid. [5/
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SOLUTION. Whether we use = or y as the fundamental (or “independent”) variable, the

surface area formula is SA = f; 27rds, where ds is an infinitesimal increment of arc-
length. Depending on whether we choose = or y as the fundamental variable, we have
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ds = \/1+ (g—g) dr or ds = /1 + (g—;) dy. Just for fun, and because we just worked

out things in terms of y in the second solution to 1 above, we will use y as the fundamental
variable. In terms of y, as we noted above, z = 24/1 —y?2 for —1 < y < 1 and z in the
given region. This means that the little bit of arc at y, the ds, gets revolved around a
circle of radius r = x — 0 = ¢ = 24/1 — 2, and that
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We plug all of this into the surface area formula previously mentioned:
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