Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2020

Solutions to Quiz #1
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1. Compute / (3902 —2x + 1) dx using the basic properties of the definite integral, the
-1
Fundamental Theorem of Calculus, and the Power Rule for integration. At each step

in which you use one of these, indicate which. [2/

SOLUTION. Here we go:
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/ (32> =224 1) dz = / 327 + / (—2)x dx +/ ldx
~1 —1 —1 —1

(Since integrals are linear, sums pass through.)
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-1 —1 —1

(Since integrals are linear, multiplication by constants
passes through. Also, z° = 1.)
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(Using the Power Rule and the Fundamental Theorem
of Calculus.)

_ .32 212 2
=7z ‘—1_33 |_1+x|_1

3 m1

-1 -1 -1

(Just a bit of cancellation to simplify things.)
=[2° - (-1)?%] = [22 = (-1)*] + [2— (-1)] (Evaluation.)
=8-(-1)]-4-14+3=9-3+3=9 (Arithmetic.) O

Consider the region whose lower boundary is the piece of the x-axis for which 0 < z < 4
and whose upper boundary consists of y = 2z for 0 < <1,y = 2> —4x+5for 1 <z < 3,
and y = —2xr+ 8 for 3 <z < 4.

2. Sketch this region. [1/

SOLUTION.
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Note that y = 22 — 42 +5 = (x — 2)%2 + 1 (via the magic of completing the square), so
this curve is a parabola, with its tip at (2,1) and opening upwards. [J
3. Find the area of this region. [2/

SOLUTION. The area of the region is the area between y = 2z and the z-axis for 0 < x <1,
plus the area between y = 2% — 4 + 5 and the z-axis for 1 < z < 3, plus the area between
y = —2x + 8 and the z-axis for 3 < z < 4. Each of these areas is given by a definite
integral; note that none of these sub-regions dip below the z-axis, so the corresponding
definite integrals compute the actual area in each case.
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