
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2020

An Integral Tale
or

How do we compute

∫ π

0

x sin(x)

1 + cos2(x)
dx ?

I ran across this integral∗ while trying to find an example to present in class that did
not need advanced integration techniques, but was still quite difficult.

False start the first.

The derivative of cos(x) is − sin(x), and there is a sin(x) available as a factor of the
numerator, so perhaps we can use the substitution w = cos(x) to simplify the integrand.
Then dw = − sin(x) dx, so (−1) dw = sin(x) dx and, if we change the limits as we go along,

we have
x 0 π
w 1 −1

. The one hitch is that x is the other factor of the numerator: there is

nothing we can do with it except solve for x in w = cos(x), so x = arccos(w). Ugh! Let’s
give it a shot anyway:∫ π

0

x sin(x)

1 + cos2(x)
dx =

∫ −1
1

arccos(w)

1 + w2
(−1) dw =

∫ 1

−1

arccos(w)

1 + w2
dw

The last step uses the general property of definite integrals that switching the the limits

switches the sign:

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

At this point the options seem to be to simplify the arccos(w) by doing a substitution,
which would probably get us back to where we started, or to try integration by parts,

which seems more promising because arccos(w) and
1

1 + w2
are pretty dissimilar. Since

most of us don’t know the antiderivative of arccos(w) off the top of our heads, but maybe

remember the derivative, we’ll use the parts u = arccos(w) and v′ =
1

1 + w2
. Then

u′ =
d

dw
arccos(w) =

−1√
1− w2

and v = arctan(w), which gives us:

∫ 1

−1

arccos(w)

1 + w2
dw = arccos(w) arctan(w)|1−1 −

∫ 1

−1

− arctan(w)√
1− w2

dw

The square root in the denominator of the integral remaining on the right makes it likely
that that integral is at least as hard as the one we started with on the left, so this entire
approach is more than likely going nowhere.

∗ It is Exercise 93 in §5.5 of Calculus, 8th Edition (Early Transcendentals), by James Stewart.
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False start the second.

Since x is so dissimilar from the other factor,
sin(x)

1 + cos2(x)
, of the integrand, perhaps

it would be better to go for integration by parts right away. The question then is how
to divide up these dissimilar factors between u and v′ in the integration by parts formula∫ b

a

u · v′ dx = u · v|ba −
∫ b

a

u′ · v dx.

If we try u = x and v′ =
sin(x)

1 + cos2(x)
, we get u′ = d

dxx = 1, which is a promising

simplification, but to get v we have to put in some work. We’ll use the substitution
w = cos(x), so dw = − sin(x) dx and thus sin(x) dx = (−1) dw, to compute v =

∫
v′ dx:

v =

∫
sin(x)

1 + cos2(x)
dx =

∫
1

1 + w2
(−1) dw = − arctan(w) = − arctan (cos(x))

Plugging all this into the integration by parts formula gives us:∫ π

0

x sin(x)

1 + cos2(x)
dx = x [− arctan (cos(x))]|π0 −

∫ π

0

1 · [− arctan (cos(x))] dx

arctan (cos(x)) doesn’t look like it’s easier to handle than the original problem (feel free to
give it a try!), so perhaps it would be better to break up the product in the opposite way.

If we try u =
sin(x)

1 + cos2(x)
and v′ = x, then it is easy to see that v =

x2

2
. We have to

work a little harder to get u′, though, using the Chain, Quotient, and Power Rules:

u′ =
d

dx

(
sin(x)

1 + cos2(x)

)
=

[
d
dx sin(x)

]
cos2(x)− sin(x)

[
d
dx cos2(x)

]
[cos2(x)]

2

=
cos(x) · cos2(x)− sin(x) · 2 cos(x) (− sin(x))

cos4(x)

=
cos2(x) + 2 sin2(x)

cos3(x)
=

1 + sin2(x)

cos3(x)
= sec3(x) + tan2(x) sec(x)

Trig identities being what they are, there are lots of ways to write u′. However we do
so, though, what we get after plug things into the integration by parts formula isn’t very
promising either. For example, if we use the second form on the last line, we get:∫ π

0

x sin(x)

1 + cos2(x)
dx =

sin(x)

1 + cos2(x)
· x

2

2

∣∣∣∣π
0

−
∫ π

0

1 + sin2(x)

cos3(x)
· x

2

2
dx

Time to try something different . . .
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A method that works.

Following a hint given in a preceding problem for a related integral, I finally tried
to use the substitution u = π − x. Then x = π − u, du = (−1) dx, dx = (−1) du, and,

changing the limits as we go along,
x 0 π
u π 0

.

The key to making this substitution work is the fact that sin(π − x) = sin(x) and
cos(π− x) = − cos(x). Why do these identities work? They do due to the periodic nature
of sin(x) and cos(x): shifting the graph of either to the left or right by π radians will
give you the negative of the original graph, i.e. sin(x ± π) = − sin(x) and cos(x ± π) =
− cos(x). Since sin(x) is an odd function, i.e. sin(−x) = − sin(x) for all x, it follows that
sin(π − x) = sin(−x+ π) == − sin(−x) = − (− sin(x)) = sin(x). Similarly, since cos(x) is
an even function, i.e. cos(−x) = cos(x) for all x, it follows that cos(π−x) = cos(−x+π) =
− cos(−x) = − cos(x).

Let’s go for it, using the given substitution and the identities above:∫ π

0

x sin(x)

1 + cos2(x)
dx =

∫ 0

π

(π − u) sin(π − u)

1 + cos2(π − u)
(−1) du =

∫ π

0

(π − u) sin(π − u)

1 + cos2(π − u)
du

(The last by the general fact that
∫ b
a
f(t) dt = −

∫ a
b
f(t) dt.)

=

∫ π

0

(π − u) sin(u)

1 + [− cos(u)]
2 du =

∫ π

0

(π − u) sin(u)

1 + cos2(u)
du

=

∫ π

0

[
π sin(u)

1 + cos2(u)
− u sin(u)

1 + cos2(u)

]
du

=

∫ π

0

π sin(u)

1 + cos2(u)
du−

∫ π

0

u sin(u)

1 + cos2(u)
du

=

∫ π

0

π sin(x)

1 + cos2(x)
dx−

∫ π

0

x sin(x)

1 + cos2(x)
dx

The last step is by the general fact that
∫ b
a
f(x) dx =

∫ b
a
f(u) du. (Think about it:

∫ b
a
f(t) dt

is a number; t, or whatever you choose to call the variable inside the integral, is there just

for bookkeeping.) Observe now that the integral

∫ π

0

x sin(x)

1 + cos2(x)
dx occurs at both ends

of the calculation. That is, we have the equation:∫ π

0

x sin(x)

1 + cos2(x)
dx =

∫ π

0

π sin(x)

1 + cos2(x)
dx−

∫ π

0

x sin(x)

1 + cos2(x)
dx

Moving

∫ π

0

x sin(x)

1 + cos2(x)
dx to the left-hand side gives

2

∫ π

0

x sin(x)

1 + cos2(x)
dx =

∫ π

0

π sin(x)

1 + cos2(x)
dx ,
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and dividing by 2 on both sides gives∫ π

0

x sin(x)

1 + cos2(x)
dx =

1

2

∫ π

0

π sin(x)

1 + cos2(x)
dx =

π

2

∫ π

0

sin(x)

1 + cos2(x)
dx .

It remains to finish the job by evaluating the integral on the right. We will use the
substitution w = cos(x). (Yes, the one from the first false start and the first try in the
second false start. Sigh.) Then we have dw = − sin(x) dx, so (−1) dw = sin(x) dx and,

changing the limits as we go along, we also have
x 0 π
w 1 −1

.

∫ π

0

x sin(x)

1 + cos2(x)
dx =

π

2

∫ π

0

sin(x)

1 + cos2(x)
dx =

π

2

∫ −1
1

1

1 + w2
(−1) dw

=
π

2

∫ 1

−1

1

1 + w2
dw =

π

2
arctan(w)

∣∣∣1
−1

=
π

2
arctan(1)− π

2
arctan(−1) =

π

2
· π

4
− π

2
·
(
−π

4

)
=
π2

8
+
π2

8
=
π2

4

Whew! �
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