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Total /30

Instructions
• Show all your work. Legibly, please! Simplify where you reasonably can.
• If you have a question, ask it!
• Use the back sides of all the pages for rough work or extra space.
• You may use a calculator and (all sides of) an aid sheet.
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1. Compute
dy

dx
for any four (4) of parts a–f. [12 = 4 × 3 each]

a. y = xex b. x2 − y = 1 + x c. y = ln (cos(x))

d. y = tan
(
x2
)

e. y = cos(x) + ex
2

f. y =
x− 1

x2 + 1

Solutions. a. Product Rule:

dy

dx
=

d

dx
(xex) =

(
d

dx
x

)
· ex + x ·

(
d

dx
ex
)

= 1 · ex + x · ex = (1 + x)ex �

b. If x2− y = 1 + x, then y = x2− x− 1, so
dy

dx
=

d

dx

(
x2 − x− 1

)
= 2x+ 1 + 0 = 2x+ 1,

mostlu using the Power Rule. �

c. Chain Rule; let u = cos(x), and then:

dy

dx
=

d

dx
ln (cos(x)) =

d

dx
ln(u) =

(
d

du
ln(u)

)
· du
dx

=
1

u
· d
dx

cos(x)

=
1

cos(x)
· (− sin(x)) = − sin(x)

cos(x)
= − tan(x) �

d. Chain Rule again, with a bit of Power Rule; let w = x2, and then:

dy

dx
=

d

dx
tan

(
x2
)

=
d

dx
tan(w) =

(
d

dw
tan(w)

)
· dw
dx

= sec2(w) · d
dx
x2

= sec2
(
x2
)
· 2x = 2x sec2

(
x2
)

�

e. Chain Rule with a bit of Power Rule again for the harder part; let w = x2, and then:

dy

dx
=

d

dx

(
cos(x) + ex

2
)

=
d

dx
cos(x) +

d

dx
ex

2

= − sin(x) +
d

dx
ew

= − sin(x) +

(
d

dw
ew
)
· dw
dx

= − sin(x) + ew · d
dx
x2 = − sin(x) + ex

2

· 2x

= − sin(x) + 2xex
2

�

f. Quotient Rule and a bit of Power Rule:

dy

dx
=

d

dx

(
x− 1

x2 + 1

)
=

[
d
dx (x− 1)

]
·
(
x2 + 1

)
− (x− 1) ·

[
d
dx

(
x2 + 1

)]
(x2 + 1)

2

=
[1] ·

(
x2 + 1

)
− (x− 1) · [2x+ 0]

(x2 + 1)
2 =

x2 + 1− 2x2 − (−2x)

(x2 + 1)
2

=
−x2 + 2x+ 1

(x2 + 1)
2 �
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2. Do any two (2) of parts a–d. [8 = 2 × 4 each]

a. Compute lim
t→0

tan(t)

sin(t)
.

b. Find the coordinates of the tip of the parabola y = x2 − 2x− 3.

c. Find the equation of the tangent line to y = x2 + 1 at the point (1, 2).

d. Use the ε–δ definition of limits to verify that lim
x→1

(4x− 3) = 1.

Solutions. a. Here goes:

lim
t→0

tan(t)

sin(t)
= lim

t→0

[
tan(t) · 1

sin(t)

]
= lim

t→0

[
sin(t)

cos(t)
· 1

sin(t)

]
= lim

t→0

1

cos(t)
=

1

cos(0)
=

1

1
= 1 �

b. (Completing the square.) Observe that:

y = x2 − 2x− 3 = x2 − 2x+

(
−2

2

)2

−
(
−2

2

)2

− 3

=
[
x2 − 2x+ (−1)2

]
+
[
−(−1)2 − 3

]
= (x− 1)

2 − 4

It follows that the tip of the parabola has x-coordinate 1, when (x − 1)2 is as small as
possible, and y-coordinate (1− 1)2 − 4 = 0− 4 = −4, so the tip is located at (1, 4). �

b. (Between the roots.) The tip of a parabola has x-coordinate halfway between its
intercepts, i.e. halfway between the roots of the quadratic expression giving the parabola.
[Strangely enough, this works even if the roots are complex and so there are no real
intercepts!] We can find these roots by either factoring the quadratic, y = x2 − 2x − 3 =
(x+ 1)(x− 3), which gives 0 when x = −1 or x = 3, or by applying the quadratic formula:
x2 − 2x− 3 = 0 exactly when

x =
−(−2)±

√
(−2)2 − 4 · 1 · (−3)

2 · 1
=

2±
√

4 + 12

2
=

2±
√

16

2
=

2± 4

2
= 1± 2 ,

that is, when x = 1− 2 = −1 or when x = 1 + 2 = 3. Either way, the x-coordinate of the

tip must be halway between at x =
(−1) + 3

2
=

2

2
= 1, and the y-coordinate must then be

at y = 12 − 2 · 1− 3 = 1− 2− 3 = −4, so the tip is at the point (1,−4). �

b. (Calculus!) The tip of a parabola is a maximum or minumum, so the derivative will

be 0 at that point.
dy

dx
=

d

dx

(
x2 − 2x− 3

)
= 2x − 2 − 0 = 2(x − 1) = 0 exactly when

x = 1, so this must be the x-coordinate of the tip. The y-coordinate must then be at
y = 12 − 2 · 1− 3 = 1− 2− 3 = −4, so the tip is at the point (1,−4). �



c. As a sanity check, 12 + 1 = 2, so the point (1, 2) is indeed on y = x2 + 1. The tangent

line to the parabola y = x2 + 1 at x has slope
dy

dx
=

d

dx

(
x2 + 1

)
= 2x; so at the point

(1, 2), the slope of the tangent line is m = 2 · 1 = 2. It follows that the tangent line
has the equation y = 2x + b for some constant b; since it passes through the point (1, 2),
2 = 2 · 1 + b, so b = 2− 2 = 0. Thus the equation of the tangent line to y = x2 + 1 at the
point (1, 2) is y = 2x. �

d. According to the ε–δ definition of limits lim
x→1

(4x − 3) = 1 means that for every ε > 0

there is a δ > 0 such that for all x with |x − 1| < δ we have |(4x− 3)− 1| < ε. To verify
this is so, we need to figure out how to find a suitable δ if we are given an ε > 0. We will
do so here by reverse-engineering the δ from the desired conclusion:

|(4x− 3)− 1| < ε ⇐⇒ |4x− 4| < ε ⇐⇒ 4 |x− 1| < ε ⇐⇒ |x− 1| < ε

4

Suppose, then that a ε > 0 is given. If we let δ =
ε

4
, then any x with |x− 1| < δ =

ε

4
will,

by tracing the equivalences above from right to left, have |(4x− 3)− 1| < ε. It follows
that lim

x→1
(4x− 3) = 1 by the ε–δ definition of limits. �
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3. Find the domain and any and all intercepts, intervals of increase and decrease, maxi-
mum and minimum points, intervals of concavity, and inflection points of the function

g(x) =
x+ 1

x2
=

1

x
+

1

x2
. [10]

Solution. i. Domain. g(x) =
x+ 1

x2
=

1

x
+

1

x2
makes sense for all real numbers x except

for x = 0, so the domain of g(x) is {x ∈ R | x 6= 0 } = (−∞, 0) ∪ (0,∞).

ii. Intercepts. g(0) is undefined, so there is no y-intercept. g(x) =
x− 1

x2
= 0 only when

x− 1 = 0, i.e. when x = 1, so x = 1 is the only x-intercept of g(x).

iii. Increase/decrease. First, with a little help from the Quotient and Power Rules:

g′(x) =
d

dx

(
x+ 1

x2

)
=

[
d
dx (x+ 1)

]
· x2 − (x+ 1) ·

[
d
dxx

2
]

(x2)
2 =

1 · x2 − (x+ 1) · 2x
x4

=
x2 − 2x2 − 2x

x4
=
−x2 − 2x

x4
=
−(x+ 2)

x3

g′(x) =
−(x+ 2)

x3
is undefined when x = 0, and g′(x) = 0 exactly when x = −2. When

x < −2, x+ 2 < 0 and hence −(x+ 2) > 0, while x3 < 0, so g′(x) < 0; when −2 < x < 0,
x+ 2 > 0 and hence −(x+ 2) < 0, while x3 < 0, so g′(x) > 0; and when x > 0, x+ 2 > 0
and hence −(x + 2) < 0, while x3 > 0, so g′(x) < 0. We summarize this information and
the implications for g(x) in the usual table:

x (−∞,−2) −2 (−2, 0) 0 (0,∞)
g′(x) − 0 + undefined −
g(x) ↓ minimum ↑ undefined ↓

g(x) is therefore decreasing on (−∞,−2) and (0,∞) and increasing on (−2, 0).

iv. Maximum and minimum points. From the table, g(x) has a minimum at x = −2; as

g(−2) =
−2 + 1

(−2)2
= −1

4
,
(
−2,− 1

4

)
is the minimum point. Note that g(x) is undefined at

x = 0, which is the only candidate for a maximum point since it separates an interval of
increase from an interval of decrease.

v. Concavity. First, with some more help from the Quotient and Power Rules:

g′′(x) =
d

dx
g′(x) =

d

dx

(
−(x+ 2)

x3

)
=

[
d
dx (−(x+ 2))

]
· x3 − (−(x+ 2)) ·

[
d
dxx

3
]

(x3)

=
[−1] · x3 + (x+ 2) ·

[
3x2
]

x6
=
−x3 + 3x3 + 6x2

x6
=

2x3 + 6x2

x6
=

2x+ 6

x4

g′′(x) =
2x+ 6

x4
=

2(x+ 3)

x4
is undefined when x = 0, and g′′(x) = 0 exactly when x = −3.

When x < −3, 2(x+ 3) < 0, while x4 > 0, so g′′(x) < 0; when −3 < x < 0, 2(x+ 3) > 0,
while x4 > 0, so g′′(x) > 0; and when x > 0, 2(x+ 3) > 0, while x4 > 0, so g′′(x) > 0. We
summarize this information and the implications for g(x) in the usual table:



x (−∞,−3) −3 (−3, 0) 0 (0,∞)
g′′(x) − 0 + undefined +
g(x) _ inflection ^ undefined ^

g(x) is therefore concave down on (−∞,−3) and concave up on (−3, 0) and (0,∞).

vi. Inflection points. From the table, g(x) is defined at x = −3 and changes concavity

from down to up, so it is an inflection point. Since g(−3) =
−3 + 1

(−3)2
= −2

9
, the actual

point in question has coordinates
(
−3,− 2

9

)
. Note that x = 0 is not an inflection point

for two reasons: g(0) is not defined and g(x) is concave up on both sides of x = 0, so it
doesn’t change concavity.

vii. Asymptotes. [Not asked for in the question, but it helps when drawing the graph.]
First, we check for horizontal asymptotes. Note that as x heads off to ∞ or −∞, 1

x and
1
x2 both get arbitrarily close to 0.

lim
x→−∞

g(x) = lim
x→−∞

x+ 1

x2
= lim

x→−∞

(
1

x
+

1

x2

)
= 0 + 0 = 0

lim
x→+∞

g(x) = lim
x→+∞

x+ 1

x2
= lim

x→+∞

(
1

x
+

1

x2

)
= 0 + 0 = 0

Thus g(x) has the line y = 0, otherwise known as the x-axis, as a horizontal asymptote in
both directions.

Second, we check for vertical asymptotes. Since g(x) is defined and continuous every-
where except at x = 0, this is the only place vertical asymptotes might occur. Note that
as x approaches 0, x+ 1 approaches 1 and x2 approaches 0 from the positive side.

lim
x→0−

g(x) = lim
x→0−

x+ 1

x2
= +∞ lim

x→0+
g(x) = lim

x→0+

x+ 1

x2
= +∞

Thus g(x) has a vertical asymptote going up on both sides of x = 0.
viii. The graph. Cheating slightly, by getting a computer to draw it:

�

[Total = 30]


