Mathematics 1100Y — Calculus I: Calculus of one variable
TRENT UNIVERSITY, Summer 2010
Solutions to the Final Examination

Part I. Do all three (3) of 1-3.

d
1. Compute d_y as best you can in any three (3) of a—f. [15 = 3 X 5 each/
x

3
a. 22 +3zy+y* =23 b.y=In(tan(z)) c.y= / In (tan(t)) dt

d. y— e o T cos(2t)

er — e~ 7 y = sin(3t) fy=(z+2e

SOLUTIONS TO 1. Using various tricks!

a. Implicit differentiation and some algebra:

d d
?+3zy+y =23 = — (2" +3zy+y’)=--23

dz dx
d d
— 2w +3y+3 2y -0
dz dz
dy
— (204 3y)+ 3z —|—2y)% =0
dy  2rx+3y
A 3zt2y
b. Chain Rule:
d d 1 d
% = %ln (tan(x)) = tan(z) " dz tan(z) = cot(z)sec’(z) M

c¢. The Fundamental Theorem of Calculus:

3 x
Z_z _ % | In(tan(t)) dt = %(—1) /3 In (tan(t)) dt = —In (tan(z)) ®

d. Quotient Rule and some algebra with e”:

dy d e’ B (%ez) (e" —e ™) — ex% (e” —e ")
dr  dr \e” —e =) (e — e—7)?
e (ex_e—x)_ex (ex+e—x) B e2x_60_621’_60

(er —e72)’ S (e

d
=— Note that —e™* = —e . B
dx
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e. As usual with parametric functions:

dy dy _ gt cos(2t) _ sin(2t)-(=2) _ 2sin(2¢)

dr % - 4 sin(3t) ~ cos(3t)-3  3cos(3t)

. and there’s not much one can try to do to simplify this that doesn’t make it worse. B
f. Product Rule:
d d d d
Y _ L (x+2)e®) = (dx(:c + 2)) T (e4+2) et = 1e" 4 (2 4+2)e" = (¢+3)c” W

dx ~ dzx m

2. Evaluate any three (3) of the integrals a—f.  [15 = 3 x 5 each]

/4 1 T
a. / tan(x)dx b. / 5 dt c. / x cos(x) dx
—’7T/4 t - 1 0

e e:l?
d. / \V w2 —+ 9 dw e. /1 11’1((1?) dl‘ f. / m d.’L’

SOLUTIONS TO 2. Using various tricks!

a. We'll write tan(z) = sin(z) and take it from there.
cos(x)
/4 w/4
/ tan(z) dx = / sin(z) dx
—7/4 —m/4 COS(:E)
Substitute u = cos(z), so du = — sin(z) dx and

(—1) du = sin(z) dz. Also, 2 1_/71751 17{;%

1/v/2 1
:/ —du=0 N
1/v2 U

b. This one can be done with the trig substitution ¢ = tan(#), but that approach requires
integrating csc(f) along the way. We will use partial fractions instead. Note first that
t2—1=(t—1)(t+1). Then
1 A B
21 -1 ¢+l

which requires that 1 = A(t+ 1)+ B(t—1) = (A+ B)t + (A — B) i.e. A+ B =0 and
A — B = 1. Adding the last two equations gives 2A =1, so A = 5, and substituting back
into either equation and solving for B gives B = —= Hence

/tgl_ldt:/<£—%> it

1 1 1 1
d

2/ t—-1 2) t+1

t—1

:—ln(t—l)——ln(t+1)—|—C’——ln(t+1

)+c. m
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c. This is a job for integration by parts. We’ll use v = x and v = cos(x), so v’ = 1 and
v = sin(z). Thus

U U ™
/ x cos(x) dx = / wv' dr = wv|y — / u'vdz
0 0 0

— xsin(x)|g —/O sin(x) dx
= msin(m) — 0sin(0) — (—cos(x))|y

=7m-0—0-0+cos(m) —cos(0)=0-0—-1-1=-2. N

d. This is a job for a trig substitution, namely w = 3tan(f), so dw = 3sec?(8) db.

/\/w2+9dw:/y/9tan2(9)+9-35e02(9)d9
:/3\/tan2(0)+1-3sec2(0)d0
:9/m'3602(9)d9:9/se03(9)d0

This last we look up rather than do it from scratch ...
9 9
=3 sec(f) tan(0) + §1n (sec(f) + tan()) + C

o w w?
= Substituting back, tan(f) = 3 and sec(f) =1/1+ 35

9 w 9 w w?
Y W ETe M eI S
53 —|—9+211<3+ +9>+C
w
3

1
e. Integration by parts again, with v = In(z) and v' =1, so v’ = — and v = x.
x

/ln(:zz)da::/ uv'd:z::uvﬁ—/ u'vdz
1 1 1

1
= zln(z)|] —/1 - -z dx

=eln(e) — 1In(1) — /16 ldx

=e-1-1-0— 2z}
=e—(e—1)=e—e+1=1 N
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f. Substitute u = e®, so du = e” dz and €2* = (¢%)” = 42, and see what happens:

r 1 1
[ oot [ gy o= [ e
e 4 2e® + 1 u? +2u+1 (u+1)2

Substitute again, with w = v + 1 and dw = du.

/—dw———i—C’

Now we undo the substitutions.

2 2
- _4C=——"_4C ®
(u+1)3 (e” +1)°

3. Do any five (5) of a-i. [25 =5 X 5 ea.]

a. Find the volume of the solid obtained by rotating the region bounded by y = /z,
0 < x <4, the z-axis, and x = 4, about the x-axis.

SOLUTION. Here’s a crude sketch of the solid:

We'll use the disk/washer method. The disk at  has radius R = /x — 0 = \/; since
it is a disk rather than a washer, we need not worry about an inner radius. The the volume
of the solid is

cube units of whatever sort. i

b. Use the € — § definition of limits to verify that lim1 3z = 3.
r—r

SOLUTION. We need to show that for any € > 0 there is a § > 0 such that, for all z, if
|x — 1| < 9, then |3z — 3| < e.



Given an € > 0, we obtain the required ¢ > 0 with some reverse-engineering;:

3

Bxr—3|<e <<= PBlx-1)|<e <= ]:c—1|<3

Since each step is reversible, it follows that if we let § = £, then [3x — 3| <.
2

c. Find the Taylor series of f(z) = ] < 3
-

at a = 0 without taking any derivatives.

oo
SOLUTION. Recall that the formula for the sum of the geometric series > ar™ with first

n=0

term s and common ratio r < 1 is . If we set s = 22 and r = 22, it now follows that

—T

CL’2 oo 00
n
— § 33'2 (IEQ) — § x2n+2
1— 22 ’

at least when ’x2‘ < 1, i.e. when |z| < 1. By the uniqueness of power series representations,

$2

it follows that > 2?72 is the Taylor series at 0 of f(z) = Tt
n=0 -

d. Sketch the polar curve r =1+ sin(f) for 0 < 6 < 27.

SOLUTION. The simplest way to do this is to compute some points on the curve and
connect up the dots.

0 0 /6 /4 w/3 /2 27 /3 3n/4 bm/6w
sin(6) 0 1/2 1/v/2 /32 1 Vv3/2  1/v/2 1/2 0
r 1 3/2  1+1/V2 14+3/2 2 1+v3/2 1+1/V/2 3/2 1

7w/6 5mw/4 47 /3 3w/2 57/3 /4 1lw/6 27w

—-1/2 —1/vV/2 —V3/2 -1 —/3/2 —-1/vV2 —1/2 0
1/2 1-1/v/21-v3/2 0 1-v3/21-1/v2  1/2 1

Here’s a rough sketch of the curve:

\J

.




e. Use the limit definition of the derivative to compute f’(1) for f(z) = z2.

SOLUTION. Here goes:

P+ = F(1) QP r

/ .
f<1):ilzli>% h h—0 h
 lm 1+2h+h2—1 _ lim 2h + h?
h—0 h h—0
= lim (24+h) =2 W
h—0

2
f. Use the Right-hand Rule to compute the definite integral / ;d:c.
1

SoLUTION. We plug into the Right-hand Rule formula and chug away:
2 n .
x 2 — 1 1+ Z— 1 0}
—dr =1 = lim — 1+ —
[ 5 n;ff;oZ =2 (1)
= .1 1 n(n+1)
= Jim 5 [(Zl> ( 2 )] = fm g |

=1
— 1 n+1 1 1 n 1 1
Tabeol2n "o T2 | Tab% |2 1
3 3
=-4+0= [ |
4 * 4
1)” .
g. Determine whether the series Z ) converges absolutely, converges condi-
n(n

n=2
tionally, or diverges.

SOLUTION. The series converges by the Alternating Series Test: First,

(=n"
In(n)

= lim ! =0,
n— 00 ln(n)

lim |a,| = lim

since In(n) — oo as n — oo. Second, since In(n) is an increasing function of n, we have
that

B 1 < (="
“In(n+1) " In(n) | In(n)
Third, since In(n) > 0 when n > 2 and (—1)™ alternates sign, this is an alternating series.

On the other hand, the Comparison Test shows the series does not converge absolutely.
Note that n > In(n) for n > 2, so

()
In(n+1)

= |ay|

lant1] =

Lo 1
n  In(n)

(="
In(n)
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(=D"

(o) (e e)
1
Since the harmonic series E — diverges, it follows that the series E diverges as
n
n=2

In(n)
n=2
well. Thus the given series does not converge absolutely.
o
Y
Since it converges, but not absolutely, Z (=1) converges conditionally. H
“ In(n)

2

n

h. Find the radius of convergence of the power series E —na:”.
s

n=0
SOLUTION. We will use the Ratio Test.
1 2
lim dnt1 = lim (ZLE " = lim M z
n— oo an n— oo %;xn n—o00 n2 T
lz| . nP+2n+1 7| .. 2 1
= — lim — = lim 1+ -+ —
-l
T o

o 2
n x
It follows by the Ratio Test that E —a" converges if — < 1, i.e. if [z| <, and diverges
™ T
n=0

o [T . . . .
if i > 1, i.e. if |z| > 7, so the radius of convergence of the series is R = 7. B
T

i. Compute the arc-length of the polar curve r =6, 0 < 6 < 1.
SOLUTION. We plug the given curve into the polar version of the arc-length formula and

d
chug away. Note that d_g =1ifr=26.

1 2 1 1
Length:/ r2+<%) d&:/ \/92+12d0:/ V02 +1do
0 0 0

We use the trig substitution 6 = tan(t),

6 0 1
t 0 w/4

/4 w/4 m/4
= / \/tan?(t) 4+ 1 sec?(t) dt = / V/sec?(t) sec?(t) dt = / sec®(t) dt
0 0 0

As in the solution to 2d, we look this up.
w/4

so df = sec?(t) dt and

= %sec(t) tan(t) + %ln (sec(t) + tan(t))

0

= % sec(w/4) tan(w/4) + %IH (SeC(W/4) + tan(ﬂ‘/él))

~ 5 sec(0) tan(0) — In (sec(0) + tan(0))

1 1 1 11
. 2-1+§1n<\/§+1)—5-1-0—§ln(1+0):E—Fgln(\/ﬁ—kl) m

N | =
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Part II. Do any two (2) of 4-6.

4.

Find the domain, all maximum, minimum, and inflection points, and all vertical and
2
horizontal asymptotes of f(z) =e™® , and sketch its graph. [15]

SOLUTION. We’ll run through the usual checklist and then graph f(x) = e

0.

.

Domain. Note that both g(z) = e and h(z) = —2? are defined and continuous for all
x. It follows that f(x) = g (h(z)) = e=® is also defined and continuous for all z. It
follows that the domain of f(x) is all of R and that it has no vertical asymptotes. O

Intercepts. Since g(z) = €” is never 0, f(x) = e~* can never equal 0 either, so it has

no z-intercepts. For the y-intercept, simply note that f(0) = e’ =0 =1. O

Asymptotes. As noted above, f(z) = e~ has no vertical asymptotes, so we only
need to check for horizontal asymptotes.

— . . — 2 .
lim e = lim — =0 and lim e = lim — =0,
T—00 r—o0 et r——00 r——o0 et

132

since e® — 0o as 22 — oo, which happens as © — +o00. Thus f(z) = e~ has the
horizontal asymptote y = 0 in both directions. [

2 d
; dx
when x = 0 because —2e~* # 0 for all x. Note that this is the only critical point.
Since e~ > 0 for all z, f'(x) = —2z¢=%" > 0 when z < 0 and < 0 when z > 0,
so f(x) = e~ is increasing for x < 0 and decreasing for x > 0. Thus z = 0 is an
(absolute!) maximum point of f(x), which has no minimum points. [J

Maxima and minima. f'(z) = e (—332) = —2xe_m2, which equals 0 exactly

Inflection points.

— 277 _9p. <—2£U€_$2) = (4x2 — 2) e’ ,

1
2 2 2 \/5
—2e¢~" # 0 for all z. Since e > 0 for all z, f”(z) = (42* —2) e~ > 0 exactly

when 422 —2 > 0, i.e. when |z| > Lz’ and is < 0 exactly when 422 —2 < 0, i.e. when

which equals which equals 0 exactly when 422 — 2 = 0, i.e. when x = +—=, because

lz| < % Thus f(z) = e=*" is concave up on <—oo, —\%) U (\%,oo) and concave

down on (—\%, \%) Thus f(z) = e~ has two inflection points, at x = i\%. O

Graph. f(z) = e~ is essentially the classic “bell curve” without some small ad-
justments that are made to have the total area under the “bell curve” be equal to
1.



Exp(-x"2)

0.8 .

0.6 B

04 | E

0.2 | .

This graph was generated with the command tt Plot2D(Exp(-x"2),-10:10) in Yacas
(“Yet Another Computer Algebra System”). [

That’s all for this one, folks! l

5. Find the area of the surface obtained by rotating the curve y = tan(z), 0 < z <
about the z-axis. [15]

Y

N

SOLUTION. This is, quite unintentionally, by far the hardest problem on the exam. [I
hallucinated my way to a fairly simple “solution” when making up the exam, and the error

survived all my checks ... | Here’s a crude sketch of the surface:
A
dy _d 2 . . .
Note that el tan(x) = sec”(z). Plugging this into the appropriate surface area
x x



formula gives:

/ 27ry\/1+ d:c —/ 27 tan(x)/1 + sect(x) dz

Let u = sec?(z), so du = 2sec' z) tan(z) dz and

1 1 x 0 7/4
2tan(x)dm:mdu:adu; a,lsou 1 9 -

2 2
1 1

:7r/ \/1+u2-—du:7r/ —V1+4+u?du
1 U 1 U

Now let u = tan(#), so du = sec®(#) df and

u 1 2
0 m/4 arctan(2)’

arctan(2) 1
= / 1+ tan?(6) sec*(0) do

/4 tan(0)
arctan(2) 3 arctan(2)

:/ sec”(0) d&z/ ‘ 1 "
_— tan(0) /4 sin(#) cos?(6)

At this point — if they even got this far — most people would get stuck. We have
0
one last desperate option, though, namely the Weierstrauss substitution: ¢ = tan (—),

2
(0) L= (0) 2t d df 2 Jt. The limits get pretty ugly h
= —— sin(f) = ——, an = ——dt. imi r r
SO COos 1+§2,s 1—|—t(2’)a e e s get pretty ugly here,
0 /4 arctan(2 o .
though: t tan(r/8) tan (arctan(2)/2) [There may be some way to simplify the limits,
but by now I can’t be bothered ... | Resuming integration:

/4 d 2 arctan(2) 1
Y
2 1 dxr = ——F——df
/0 T (da:) o /7r/4 sin (@) cos?(0)

/tan(arctan(Q)/2) 1+ 2 <1 + 2 ) 2 9
. . dt
san(/8) 2t \1-12) 1+

After some algebra, which I’ll let you do, we get
tan(arctan(2)/2) A + 2t2 +1
/tan(ﬂ/8) t(t - 1)2(t + 1)2

. which we can do using partial fractions.

dt

10



To continue we need to find the constants A—FE such that

t* 4262 41 A, B _C D _E
tt—1)2t+1)2 ¢t (t—1)2 t—1 (t+1)2 t+1

)2
)2
)

At —1)2%(t+1)% + Bt(t +

+ Ct(t —1)(t+1)% + Dt(
+ Et(t —1)?

tt —1)2(t +1)2

t—
(t+

(A+C+E)t*+(B+C+D—-E)t3
+ (=24 +2B - C —2D — E)t?
+(B-C+D+E)t+A

t(t —1)2(t + 1)2 ’

that is, satisfying the system of linear equations:

A + C + £F =1

B + C + D - E 0

- 2A + 2B - C - 2D - FE 2
B - C + D 4+ E =0

A = 1

Solving this [more work for you!] givesus: A=1, B=1,C =0,D = —1, and E = 0.
Resuming integration again [and leaving some more routine work for you]:

tan(arctan(2)/2) 4 2
/ 2y 1+ dm—/ t+22t +12dt
\ tan(r/8) tt—1)2(t+1)
tan(arctan(2)/2) 1 1 1
:/ (; + 3 2) dt
tan(r/8) t-12 (t+1)
1 1 tan(arctan(2)/2)
OMﬂ t—1+t+1)

= (ln (tan (arctan(2)/2)) —

tan(m/8)
1
tan (arctan(2)/2) — 1

1
+tan (arctan(2)/2) + 1)

1 1
B (ln (tan(r/8)) — tan(m/8) — 1 + tan(m/8) + 1>

Simplify if you can — and dare! H

6. Find the volume of the solid obtained by rotating the region below y = 1 — 22,
—1 <z <1, and above the z-axis about the line z = 2. [15/

11



S~

SOLUTION. Here’s a crude sketch of the solid:

We will use the method of cylindrical shells to find the volume of this solid. Note that
the shell at =, where —1 < z < 1, has radius r = 2 — x and height h =y — 0 = 1 — 22
Plugging this into the formula for the volume gives:

1 1
/ 2rrhdx = / 2m(2 —z) (1 — 2%) da
—1 —1

1
:277/ (2—x—2x2+x3) dz
1
1

_ Ly 235 14
=27 (Qx 2m 33@ + 4x ) »
=27 (2 L2 + : 2 2 = + 2 + !
T\" T2y T 27371
13 —19 32 16
=21 — —2n-—— =21 —=—n N
T T e 3t
Part III. Do one (1) of 7 or 8.
7. Do all three (3) of a—c.
a. Use Taylor’s formula to find the Taylor series of e” centred at a = —1. [7]

SOLUTION. If f(z) = e®, then f'(z) = e*, f”(x) — e, and so on; it is pretty easy to see
1

that f(")(z) = e” for all n > 0. It follows that f(™(—1) = e~! = = for all n > 0. Hence
e

the Taylor series of e” centred at a = —1 is:

-1

s (n)(_ i e >0
SEE oy =Y et = 3 )

b. Determine the radius and interval of convergence of this Taylor series. [4]

12



SoLuTION. We'll use the Ratio Test:

lim |21 = Jim (n+11)!e =1 (x + 1)‘
n—0o | Qp n—o00 m((p + 1)” n—oo |n + 1
. 1
= |z + 1| lim =]lz+1-0=0
n—oo 1, + 1

It follows that the series converges for any = whatsoever, i.e. it has radius of convergence
R = oo and hence has interval of convergence (—oo,c0). B

c. Find the Taylor series of e* centred at a = —1 using the fact that the Taylor
2 3 4
x x

> ,.n

x x
ies of e* tdtO'E—zl =+t =+t
series of e” centred a 1sn:0n! +x+2+6+24+ [4]

SOLUTION. We plug x — (—1) =z + 1 in for z in e and in its Taylor series:

x+1 ('T + 1)n
¢ o Z n!
n=0
Since e*t! = e%e, it follows that
Ie= (z+1)" = (z+1)"
ew:_z(+) :Z(+)_
e n! nle
n=0 n=0
Since Taylor series are unique this must be the Taylor series of e” centred at a = —1. B

8. Do all three (3) of a—c. You may assume that the Taylor series of f(z) = In(1 + z)
o (1)t 2 3 4 5 6
centredatazois;%x”:x_%+%_%_F%_%_F....
a. Find the radius and interval of convergence of this Taylor series. [6]

SOLUTION. We'll use the Ratio Test to find the radius of convergence.

(=pn+2
lim |22 = g5 ntl o — lim |—-— %
n—oo | Qp n—oo (=pntt n—oo n+1
n
R e Y ey
1 1
= [z| lim =lz| —— =z 1 = |z

It follows by the Ratio Test that the given Taylor series converges absolutely when |z| < 1
and diverges when |z| > 1, so the radius of convergence is R = 1.
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To determine the interval of convergence, we need to check what happens at = =
+R = +£1. Plugging in x = —1, the series becomes

n—l—l o

T

n=1

(i.e. the negative of the harmonic series), which diverges by the p-Test. Plugging in = = 1,
the series becomes

i n+1 i(_l)n+1_1 1+1 1+1
— ~ n 2 3 4 5

(i.e. the alternating harmonic series), which converges by the Alternating Series Test, as
we’ve seen in class. Therefore the interval of convergence of the given Taylor series is
(—1,1). &

+i_i+ iﬂ [3/

. . 3 1
b. Use this series to show that In (5) = FRIEYY non

1
2 p—

SOLUTION. Since a function is equal to its Taylor series within the latter’s radius of
convergence and |% — 1‘ = % < 1, we must have

() () E () S

n=1 n=1
as desired. W
1 1 1 1 1 —1)ntl
c. Find an n such that T, 3)=35 st & + -+ % is guaranteed
1 3
ithin 0.01 = — of In | = ).
to be within 0.0 10p °f I (2) [6]
SOLUTION. We need to find an n such that
3 1 e (_1)z'—|—1
n(=|-T,(=)]= —_— .OL.
n(3) -1 (3)] | 2, e <o

One could, with some effort, accomplish this by considering the nth remainder term,
R, (l), of the given Taylor series, but in this case there is a simpler approach available.

>n+1

Note that Z o is an alternating series. It follows from the proof of the Alternating

Series Test that
(1)
(n+ 1)2n+1

= (1)
2 ’

1=n+1

14



) (_1)71—!—2 1 1 .
so all we need to do is ensure that (nF 1)2nt1 = (n T )21 < 0.01 = 100" A little
brute force goes a long way here:
n 1 2 3 4 5
1 i 1 1 1 1
(nf1)27FT 8 24 64 160 768

Thus n = 4 does the job. (Note that any larger n would serve too.) B

[Total = 100]
Part IV - Something different. Bonus!

e'”. Write a haiku touching on caclulus or mathmatics in general. [2]
haiku?
seventeen in three:

five and seven and five of
syllables in lines

I HOPE THAT YOU ENJOYED THE COURSE. ENJOY THE REST OF THE SUMMER!
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