Mathematics 1110H (Section A) — Calculus I: Limits, Derivatives, and Integrals
TRENT UNIVERSITY, Fall 2024

Solutions to Assignment #1
Epsilonics
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1. Verify that lim1 (_g + §) =-3 using the e-d definition of limits. [1]
Tr—r
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SOLUTION. To verify that lim1 (—g + §> =3 we need to check that for every e > 0
rT—r

there is a § > 0 such that if [z — 1| < 4, then it must be true that | (-2 + 3) — (—3)| <e.
As usual, we try to reverse-engineer the necessary d from the desired outcome. Suppose,

then, that ¢ > 0.
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This suggests that, given € > 0, we should take § = %5. Iflz—1]<éd= %5, we can run the
argument above in reverse — note that every step in it is reversible — to show that it must

be true that ’(—%x + %) — (—%)‘ < e. Thus il_)nll (—2; + %) = —% by the e-d definition

of limits. M
2. Verify that lin% 2?2 = 0 using the e definition of limits. [2]
z—

SOLUTION. We can do this one using a fully-reversible reverse-engineering approach, as in

the solution to question 1, though the algebraic details are different because the function

is not linear. To verify that lin% 22 = 0, we need to check that for every € > 0 there is a
Tr—

d > 0 such that if |x — 0| < 4, then it must be true that }xz — O| < &. Suppose, then, that
e > 0.

|x2—O’<€ = ’x2‘<5
— |z <e¢
— |z| < e
— |z 0] < e
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This suggests that, given € > 0, we should take 6 = /. If |z — 0| < § = /&, we can run
the argument above in reverse, as each step in it is reversible, to show that it must be true
that ‘xz — O| < e. Thus lin% x? = 0 by the -8 definition of limits. W

T—

3. Verify that lim2 12 = 4 using the e-§ definition of limits. /2.5]
T—

SOLUTION. Here, unfortunately for us, we will have to use an argument that is a bit more
subtle than the one in the solution to question 2 because it is not fully reversible. To

verify that lirn2 x? = 4, we need to check that for every ¢ > 0 there is a § > 0 such that if
T—r

|z — 2| < 4, the it must be true that |x2 — 4{ < e. Suppose, then, that ¢ > 0. We’ll try to
reverse-engineer the necessary ¢.

|a:2—4’ <e <= |(z—-2)(z+2)|<e
— |z -2|-|lx+2|<e
5

— |z —2| <
| | |z + 2|

At this point we have a problem, in fact, two. First,  is used to control x, so it can’t
depend on z, which means that we can’t just take § = ﬁ Second, even if we could, we
would have to ensure that |z+2| # 0 — dividing by 0 is undefined — so we can’t accidentally
allow z = —2. We can solve both problems by ensuring up front that ¢ is small enough to
keep x close enough to 2 that it is well away from —2. The distance between 2 and —2 is
2 — (—2) = 4 and making sure that § < 4 will do the job. We choose to ensure that § <1

because 1 is smaller than 4 and easy to work with. What does having § < 1 do for us?

lr —2] <0 = |r—2| <1 (Note that this step is not reversible.)
-l<zx-2<1
-14+2<2-24+2<1+2
1<z <3
3=1+2<2+2<3+2=5
! >
T+ 2
€
a:—|—2>
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Since having 6 < 1 gives us  + 2 > 3, we are guaranteed that z +2 > 0, so x + 2 # 0 and

|z 4 2| = 2 + 2. Even better, it also tells us that if |z — 2| <§ <1, then £ < 255 = FETIE
So how exactly do we pick 67 We simply make it be the smaller of 1 and £; that is,

5
0 = min {1, %} if you want notation. We check that this works.

Suppose € > 0 is given and we set § = min {1, %} Then § > 0, as required, since both
1 and £ are greater than 0. Now suppose that [z — 2| < §. Since § < 1, it follows from the
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€
longish calculation above that § < = < . This, in turn, gives us:

5 |z +2
€ 15
-2/ < = -2 < =x<
|2 | |2 | 5 |z + 2|
€
— |r—2| <
| | |z + 2|

= |lr-2|-|lx+2|<e
= |(z—-2)(z+2)|<e¢
= |2*| <e

Since for every € > 0 there is a § > 0 such that if |z — 2| < 4, then i ‘12 — 4‘ < g, it follows
by the e-§ definition of limits that lim2 22 = 4. Whew! B
T—r

2 _
4. Consider lim a: 25.
z—=5 1 —5H

a. Compute this limit using the practical rules for computing limits. [1/
b. Verify that your answer is correct using the e—§ definition of limits. [1/

SOLUTIONS. a. Here we go:

x? — 25 — lim (x —5)(z +5)

lim =1 =lim(z+5)=5+5=10 O
z—=5 x —DbH T—5 r—25 T—5
_x? =25 - -
b. Since =7 + 5 except at © = 5 (where it is undefined), this is really a small
x J—

2
x<—25
variation on the procedure in the answer to question 1. To verify that hIIl5 = 10
T—r T —

usinfg the e—¢ definition of limits we need to show that for every ¢ > 0 there is a 6 > 0
2
x“ — 25

such that if 0 < |x — 5| < 4, then

m2—25)
-5

As usual, we try to reverse-engineer the required > 0. Suppose € > 0; then:

— 10' < e. (We have to ensure that 0 < |z — 5|

to avoid dividing by 0 in

x2 —25
r—2>5

(x —5)(x+5)
T —95
< |[r+5—-10/<e aslongasx#5

— |z —5|<e

—10‘<5 <=

—10'<5

It follows that 6 = ¢ works. For if 0 < |x —5| < § = ¢, the above chain of reasoning is fully

2 _ 95
x — 10

reversible (as 0 < |z — 5| implies that z # 5), so <e. N
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5. Verify that lim — = 3 using the e—§ definition of limits. [2.5/

r—3 X

SOLUTION. The basic idea here is similar to the one in the solution to question 3: get
around an awkward denominator involving x by limiting ¢ to limit the range of xs we need
to deal with.

1
To verify that lir% i using the e—d definition of limits, we need to check that for
T—>3 T

every € > 0, there is a § > 0 such that if |z — 3| < 4, then ’% — %| < e. As usual, we try
to reverse-engineer the § we need from ‘% — %‘ < €. Suppose, then, that we are given an
e >0.
1 1 3
z 5‘ AR E R v B
3—x
‘ 37 <e€
3 — x|
32|
[z — 3|
<~ <eg
3|
— |z — 3| < 3|z|e

We can’t use § = 3|x|e because it depends on z; there is also a potential problem if z = 0,
since that would give us that 0 < |x — 3] < 0, and hence that 0 < 0, which is impossible.
We work around this by making sure that ¢ is small enough to have |z — 3| < § imply that
x # 0. The distance between 3 and 0 is 3, so any positive bound on § that is less than 3
will do. 1 is a convenient positive number less than 3, so we’ll use that.

If0<d<1and |z — 3| <, then we have |z — 3| < 1, so:

lr—3] <1 <= —-1<z-3<1
—= 2=-143<x<1+3=4
— 6=3-2<3r<2-4=12
< 6<3Jr|<12 (Sinceb6<3r=0<2<z=2x=|z|)
<= 6e < 3|z|e < 12¢

This suggests that we try letting 6 = min {1,6e}. Suppose that |z — 3] < §. Since § < 1,
it follows that 6 < 6e < 3|z|e. As we then have |x — 3| < § < 6e < 3|x|e, we can reverse

the first long calculation above to obtain < g, as required.

1 1
Thus lim — = 3 by the e-d definition of limits. W
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