
Mathematics 1110H (Section A) – Calculus I: Limits, Derivatives, and Integrals
Trent University, Fall 2024

Solutions to Assignment #1
Epsilonics

1. Verify that lim
x→1

(
−2x

3
+

1

3

)
= −1

3
using the ε–δ definition of limits. [1]

Solution. To verify that lim
x→1

(
−2x

3
+

1

3

)
= −1

3
, we need to check that for every ε > 0

there is a δ > 0 such that if |x− 1| < δ, then it must be true that
∣∣(− 2x

3 + 1
3

)
−
(
− 1

3

)∣∣ < ε.
As usual, we try to reverse-engineer the necessary δ from the desired outcome. Suppose,
then, that ε > 0. ∣∣∣∣(−2x

3
+

1

3

)
−
(
−1

3

)∣∣∣∣ < ε ⇐⇒
∣∣∣∣−2x

3
+

1

3
+

1

3

∣∣∣∣ < ε

⇐⇒
∣∣∣∣−2x

3
+

2

3

∣∣∣∣ < ε

⇐⇒ 2

3
|−x+ 1| < ε

⇐⇒ 2

3
|x− 1| < ε

⇐⇒ |x− 1| < ε
2
3

⇐⇒ |x− 1| < 3

2
ε

This suggests that, given ε > 0, we should take δ = 3
2ε. If |x−1| < δ = 3

2ε, we can run the
argument above in reverse – note that every step in it is reversible – to show that it must

be true that
∣∣(− 2x

3 + 1
3

)
−
(
− 1

3

)∣∣ < ε. Thus lim
x→1

(
−2x

3
+

1

3

)
= −1

3
by the ε–δ definition

of limits. �

2. Verify that lim
x→0

x2 = 0 using the ε–δ definition of limits. [2]

Solution. We can do this one using a fully-reversible reverse-engineering approach, as in
the solution to question 1, though the algebraic details are different because the function
is not linear. To verify that lim

x→0
x2 = 0, we need to check that for every ε > 0 there is a

δ > 0 such that if |x− 0| < δ, then it must be true that
∣∣x2 − 0

∣∣ < ε. Suppose, then, that
ε > 0. ∣∣x2 − 0

∣∣ < ε ⇐⇒
∣∣x2∣∣ < ε

⇐⇒ |x|2 < ε

⇐⇒ |x| <
√
ε

⇐⇒ |x− 0| <
√
ε
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This suggests that, given ε > 0, we should take δ =
√
ε. If |x − 0| < δ =

√
ε, we can run

the argument above in reverse, as each step in it is reversible, to show that it must be true
that

∣∣x2 − 0
∣∣ < ε. Thus lim

x→0
x2 = 0 by the ε–δ definition of limits. �

3. Verify that lim
x→2

x2 = 4 using the ε–δ definition of limits. [2.5]

Solution. Here, unfortunately for us, we will have to use an argument that is a bit more
subtle than the one in the solution to question 2 because it is not fully reversible. To
verify that lim

x→2
x2 = 4, we need to check that for every ε > 0 there is a δ > 0 such that if

|x− 2| < δ, the it must be true that
∣∣x2 − 4

∣∣ < ε. Suppose, then, that ε > 0. We’ll try to
reverse-engineer the necessary δ.∣∣x2 − 4

∣∣ < ε ⇐⇒ |(x− 2)(x+ 2)| < ε

⇐⇒ |x− 2| · |x+ 2| < ε

⇐⇒ |x− 2| < ε

|x+ 2|

At this point we have a problem, in fact, two. First, δ is used to control x, so it can’t
depend on x, which means that we can’t just take δ = ε

|x+2| . Second, even if we could, we

would have to ensure that |x+2| 6= 0 – dividing by 0 is undefined – so we can’t accidentally
allow x = −2. We can solve both problems by ensuring up front that δ is small enough to
keep x close enough to 2 that it is well away from −2. The distance between 2 and −2 is
2− (−2) = 4 and making sure that δ < 4 will do the job. We choose to ensure that δ ≤ 1
because 1 is smaller than 4 and easy to work with. What does having δ ≤ 1 do for us?

|x− 2| < δ =⇒ |x− 2| < 1 (Note that this step is not reversible.)

⇐⇒ −1 < x− 2 < 1

⇐⇒ −1 + 2 < x− 2 + 2 < 1 + 2

⇐⇒ 1 < x < 3

⇐⇒ 3 = 1 + 2 < x+ 2 < 3 + 2 = 5

⇐⇒ 1

3
>

1

x+ 2
>

1

5

⇐⇒ ε

3
>

ε

x+ 2
>
ε

5

Since having δ ≤ 1 gives us x+ 2 > 3, we are guaranteed that x+ 2 > 0, so x+ 2 6= 0 and
|x+ 2| = x+ 2. Even better, it also tells us that if |x− 2| < δ ≤ 1, then ε

5 <
ε

x+2 = ε
|x+2| .

So how exactly do we pick δ? We simply make it be the smaller of 1 and ε
5 ; that is,

δ = min
{

1,
ε

5

}
if you want notation. We check that this works.

Suppose ε > 0 is given and we set δ = min
{

1, ε5
}

. Then δ > 0, as required, since both
1 and ε

5 are greater than 0. Now suppose that |x− 2| < δ. Since δ ≤ 1, it follows from the
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longish calculation above that δ ≤ ε

5
<

ε

|x+ 2|
. This, in turn, gives us:

|x− 2| < δ =⇒ |x− 2| < ε

5
<

ε

|x+ 2|

=⇒ |x− 2| < ε

|x+ 2|
⇐⇒ |x− 2| · |x+ 2| < ε

⇐⇒ |(x− 2)(x+ 2)| < ε

⇐⇒
∣∣x2∣∣ < ε

Since for every ε > 0 there is a δ > 0 such that if |x− 2| < δ, then i
∣∣x2 − 4

∣∣ < ε, it follows
by the ε–δ definition of limits that lim

x→2
x2 = 4. Whew! �

4. Consider lim
x→5

x2 − 25

x− 5
.

a. Compute this limit using the practical rules for computing limits. [1]
b. Verify that your answer is correct using the ε–δ definition of limits. [1]

Solutions. a. Here we go:

lim
x→5

x2 − 25

x− 5
= lim

x→5

(x− 5)(x+ 5)

x− 5
= lim

x→5
(x+ 5) = 5 + 5 = 10 �

b. Since
x2 − 25

x− 5
= x + 5 except at x = 5 (where it is undefined), this is really a small

variation on the procedure in the answer to question 1. To verify that lim
x→5

x2 − 25

x− 5
= 10

usinfg the ε–δ definition of limits we need to show that for every ε > 0 there is a δ > 0

such that if 0 < |x− 5| < δ, then

∣∣∣∣x2 − 25

x− 5
− 10

∣∣∣∣ < ε. (We have to ensure that 0 < |x− 5|

to avoid dividing by 0 in
x2 − 25

x− 5
.)

As usual, we try to reverse-engineer the required δ > 0. Suppose ε > 0; then:∣∣∣∣x2 − 25

x− 5
− 10

∣∣∣∣ < ε ⇐⇒
∣∣∣∣ (x− 5)(x+ 5)

x− 5
− 10

∣∣∣∣ < ε

⇐⇒ |x+ 5− 10| < ε as long as x 6= 5

⇐⇒ |x− 5| < ε

It follows that δ = ε works. For if 0 < |x− 5| < δ = ε, the above chain of reasoning is fully

reversible (as 0 < |x− 5| implies that x 6= 5), so

∣∣∣∣x2 − 25

x− 5
− 10

∣∣∣∣ < ε. �
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5. Verify that lim
x→3

1

x
=

1

3
using the ε–δ definition of limits. [2.5]

Solution. The basic idea here is similar to the one in the solution to question 3: get
around an awkward denominator involving x by limiting δ to limit the range of xs we need
to deal with.

To verify that lim
x→3

1

x
=

1

3
using the ε–δ definition of limits, we need to check that for

every ε > 0, there is a δ > 0 such that if |x − 3| < δ, then
∣∣ 1
x −

1
3

∣∣ < ε. As usual, we try

to reverse-engineer the δ we need from
∣∣ 1
x −

1
3

∣∣ < ε. Suppose, then, that we are given an
ε > 0. ∣∣∣∣ 1x − 1

3

∣∣∣∣ < ε ⇐⇒
∣∣∣∣ 3

3x
− x

3x

∣∣∣∣ < ε

⇐⇒
∣∣∣∣3− x3x

∣∣∣∣ < ε

⇐⇒ |3− x|
|3x|

< ε

⇐⇒ |x− 3|
3|x|

< ε

⇐⇒ |x− 3| < 3|x|ε

We can’t use δ = 3|x|ε because it depends on x; there is also a potential problem if x = 0,
since that would give us that 0 ≤ |x − 3| < 0, and hence that 0 < 0, which is impossible.
We work around this by making sure that δ is small enough to have |x− 3| < δ imply that
x 6= 0. The distance between 3 and 0 is 3, so any positive bound on δ that is less than 3
will do. 1 is a convenient positive number less than 3, so we’ll use that.

If 0 < δ ≤ 1 and |x− 3| < δ, then we have |x− 3| < 1, so:

|x− 3| < 1 ⇐⇒ −1 < x− 3 < 1

⇐⇒ 2 = −1 + 3 < x < 1 + 3 = 4

⇐⇒ 6 = 3 · 2 < 3x < 2 · 4 = 12

⇐⇒ 6 < 3|x| < 12 (Since 6 < 3x⇒ 0 < 2 < x⇒ x = |x|.)
⇐⇒ 6ε < 3|x|ε < 12ε

This suggests that we try letting δ = min {1, 6ε}. Suppose that |x − 3| < δ. Since δ ≤ 1,
it follows that δ ≤ 6ε < 3|x|ε. As we then have |x − 3| < δ ≤ 6ε < 3|x|ε, we can reverse

the first long calculation above to obtain

∣∣∣∣ 1x − 1

3

∣∣∣∣ < ε, as required.

Thus lim
x→3

1

x
=

1

3
by the ε–δ definition of limits. �
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