
MATH1110H-B-lab-2023-09-26-F01

October 3, 2023

[1]: # MATH 1110H-B F02 Lab 2023-09-19
#
# Wherein we colour our grpahs, add up plots, and learn about the
# lim and solve commands.

p1 = plot(sech(x),-4,4,color='red') # We can change the colour of
# the graph by specifying one
# other than the default blue.
# We can also give a plot a
# name instead of displaying
# it immediately.

[2]: p1 # We can then display the named plot just by typing its name...

[2]:
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[3]: show(p1) # ... or by using the show command.

[4]: p2 = plot(1/(1+x^2),-4,4,color='green') # Another named plot with
# another colour.

[5]: p1 + p2 # We can display the two plots simultaneously simply by
# adding them.

[5]:
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[6]: lim(sech(x),x=-oo) # We can compute limits in SageMath using the
# lim command. Note that one has to specify
# with respect to which variable the limit is
# taken as well as using oo for infinity.

[6]: 0

[7]: lim(sech(x),x=56) # One can, of course, also take limits at a
# point.

[7]: 2*e^56/(e^112 + 1)

[8]: N(2*e^56/(e^112 + 1)) # As a small bonus, if you want a decimal
# approximation to the exact answer, the N
# command will do that for you.

[8]: 9.56178576777094e-25

[10]: solve(x^2 == 30,x) # The solve command lets you solve equations.
# Note that you have to specify which variable
# to solve for, even if there is only one...

[10]: [x == -sqrt(30), x == sqrt(30)]
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[11]: solve(x^2 + 1 == x, x) # Solve will not hesitate to give you
# complex solutions. It represents the
# square root of -1 by I when the solution
# is a complex number.

[11]: [x == -1/2*I*sqrt(3) + 1/2, x == 1/2*I*sqrt(3) + 1/2]

[12]: solve(sqrt(x) + 1 == x, x) # One weakness of the solve command is
# that it tends to give you a lazy and
# useless solution when the equation is
# not a polynomial one and x is easy to
# isolate.

[12]: [x == sqrt(x) + 1]

[13]: solve(sqrt(x) + 1 - x == 0, x) # Small rearrangements won't fix the
# problem...

[13]: [x == sqrt(x) + 1]

[15]: solve( x == (x-1)^2, x ) # ... but doing some preliminary work by
# hand to eliminate the square root and
# recast the equation as a polynomial
# equation will do the job.

[15]: [x == -1/2*sqrt(5) + 3/2, x == 1/2*sqrt(5) + 3/2]

[16]: var("y") # We'll need another variable for what is to follow.
solve(y == sech(x), y) # Asking for the solution y to y = sech(x)

# is kind of redundant...

[16]: [y == sech(x)]

[17]: solve( x == sech(y), y) # ... but asking for the solution y to
# x = sech(y) solves for y the as the
# inverse function, arcsech, to sech.

[17]: [y == arcsech(x)]

[18]: solve( x == 1/(e^y + e^(-y)), y) # If you actually want a formula
# for arcsech, you ask SageMath
# to solve x = sech(y) using the
# formula for sech. Note that you
# two possible answers - each is
# the inverse of a different part
# of sech.
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[18]: [y == log(-1/2*sqrt(-4*x^2 + 1)/x + 1/2/x), y == log(1/2*sqrt(-4*x^2 + 1)/x +
1/2/x)]

[19]: solve( sin(x) == 1, x) # One last example, using the solve command
# to find where sin(x) = 1. Note that it
# one of the infinitely many possible values
# of x.

[19]: [x == 1/2*pi]

[ ]: # That's all, folks!
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