Mathematics 1110H — Calculus I: Limits, Derivatives, and Integrals (Section C)
TRENT UNIVERSITY, Fall 2021

Solutions to Quiz #6
Wednesday, 3 November.

Do the following problem.

1. Find the domain, any and all intercepts, vertical and horizontal asymptotes, inter-

vals of increase and decrease, local maxima and minima, intervals of concavity, and
3

-1
;—-1-1’ and sketch its graph. [5/

inflection points, of f(x) =
SOLUTION. i. Domain. Since f(z) is a rational function, it is defined (as well as continuous
and differentiable) for all x except those where the denominator is 0. Since z3 +1 = 0
exactly when 23 = —1, i.e. exactly when x = —1, the domain of f(z) is all z # —1, that

is, (—o0, —1) U (—1, 0).
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i1. Intercepts. As f(0) = Fri- 1~ —1, y = f(x) has a y-intercept at y = —1.
3
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Since f(z) = x3+1 = 0 when 23 — 1 = 0, i.e. when z = 1, y = f(x) has an
x

z-intercept at £ = 1.

iti. Vertical asymptotes. As noted above, f(x) is defined and continuous for all = # —1,
so the only place there might be a vertical asymptote is at x+ = —1. We compute the
necessary limits to check:
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Thus f(x) does have a vertical asymptote at z = —1, approaching +oo from the left and
—o0 from the right.

w. Horizontal asymptotes. We compute the limits as x — —oo and as * — +00 to check
for horizontal asymptotes:
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It follows that f(z) has y = 1 as a horizontal asymptote in both directions, approaching
it from above as x —+ —oo and from below as © — +o00.

v. Intervals of increase and decrease, and local mazrima and minima. We first work out

().
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Observe that f'(x) is (like f(x) itself) defined (and continuous and differentiable) for all
x # —1.
It is pretty obvious that f’(z) = 0 exactly when 22 = 0, which is true exactly when
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x = 0. Since 6 > 0 and any square must be at least 0, we have that f’(x) = —( 3 - 1)2 =
x° 4+

2
6 ( ’ ) > 0 for all = for which it is defined. Thus f’(z) is positive, and hence f(z)
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is increasing, for all x for which it is defined except for x = 0. This means that the
critical point x = 0 is neither a local maximum nor a local minimum. We summarize this
information in a table:
x  (—o00,—1) -1 (=1,0) 0 (0, 00)
f'(x) + undef. + 0 +
f(x) T undef. T crit. pt. 0

vi. Intervals of concavity and points of inflection. We first work out f”(z).
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Observe that f'(x) (like f(z) and f’(z)) is defined (and continuous and differentiable) for
all z £ —1.
f"(z) = 0 exactly when 12z (1 — 2z%) = 0, which happens exactly when z = 0 or

1
v =273 = g5 ~ 07937 When o < —1, 120 < 0, 1= 22° > 0 and (o” + 1)? <0, so
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122 < 0,1 —22% >0, and (2% + 1)3 > 0, so f”(x) <0, and so f(z) is concave down. For
0 <z <273 we have 12z > 0, 1 — 223 > 0, and (23 + 1)3 >0, s0 f”’(x) >0, and so f(x)
is concave up. Finally, when z > 2713 we have 12z > 0, 1 — 22% < 0, and (acg + 1)3 > 0,
so f"(x) < 0 and f(x) is concave down. It follows that both z = 0 and 2 = 27/3 are
inflection points because f(x) switches concavity at each. (x = —1 would be an inflection
point, too, if f(z) and its derivatives were actually defined there ... ) We summarize this
information in another table:
z  (-oo0,—1) -1 (=1,0) 0 (0,271/3) 2713 (271/3 400)
" (x) + undef. — 0 + 0 —
f(x) — undef. ~ infl. pt. — infl. pt. ~

> 0, so f(x) is concave up. Similarly, when —1 < z < 0, we have



vii. The graph. 1t’s a bit of a cheat, but the following graph was made by SageMath using
the command: plot((x~3-1)/(x"3+1),-5,5,ymin=-5,ymax=>5)

Note that SageMath drew in the vertical asymptote at * = —1 on it’s own, even
though it isn’t part of the graph of the function. This weakness is shared by many other
plotting programs. B
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