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Trent University, Fall 2019

MATH 1110H (Section A) Test
Wednesday, 30 October

Time: 15:00–15:50
Space: TSC 1.22

Name: Solutions

Student Number: 0314159

Question Mark

1
2
3

Total /30

Instructions
• Show all your work. Legibly, please! Simplify where you reasonably can.
• If you have a question, ask it!
• Use the back sides of all the pages for rough work or extra space.
• You may use a calculator and (all sides of) an aid sheet.
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1. Compute
dy

dx
for any three (3) of parts a–f. [12 = 3 × 4 each]

a. y =
(
x2 + 1

)41
b. y =

x2 − 1

x2 + 1
c. y = 2−x

d. y =
sin(x)

tan(x)
e. y = cos

(
x3

)
f. ex+y = 1

Solutions. a. Power and Chain Rules.

dy

dx
=

d

dx

(
x2 + 1

)41
= 41

(
x2 + 1

)40 · d
dx

(
x2 + 1

)
= 41

(
x2 + 1

)40 ·2x = 82x
(
x2 + 1

)40
�

b. Quotient and Power Rules.

dy

dx
=

d

dx

(
x2 − 1

x2 + 1

)
=

[
d
dx

(
x2 − 1

)] (
x2 + 1

)
−
(
x2 − 1

) [
d
dx

(
x2 + 1

)]
(x2 + 1)

2

=
[2x]

(
x2 + 1

)
−
(
x2 − 1

)
[2x]

(x2 + 1)
2 =

2x3 + 2x− 2x3 + 2x

(x2 + 1)
2 =

4x

(x2 + 1)
2 �

c. Memorization and Chain Rule.
dy

dx
=

d

dx
2−x = ln(2)2−x · d

dx
(−x) = −ln(2)2−x �

c. Less memorization, some algebra, and Chain Rule.

dy

dx
=

d

dx
2−x =

d

dx

(
eln(2)

)−x
=

d

dx
e−ln(2)x = e−ln(2)x · d

dx
(−ln(2)x)

= −ln(2)e−ln(2)x = −ln(2)2−x �

d. Simplify first. Since y =
sin(x)

tan(x)
= sin(x) ÷

(
sin(x)

cos(x)

)
= sin(x) · cos(x)

sin(x)
= cos(x), we

have
dy

dx
=

d

dx
cos(x) = − sin(x). �

d. Quotient Rule, simplify later.

dy

dx
=

d

dx

(
sin(x)

tan(x)

)
=

[
d
dx sin(x)

]
tan(x)− sin(x)

[
d
dx tan(x)

]
tan2(x)

=
cos(x) tan(x)− sin(x) sec2(x)

tan2(x)
=

cos(x) · sin(x)cos(x) − sin(x) sec2(x)

tan2(x)

=
sin(x)− sin(x) sec2(x)

tan2(x)
=

sin(x)
(
1− sec2(x)

)
tan2(x)

=
− sin(x)

(
sec2(x)− 1

)
tan2(x)

=
− sin(x) tan2(x)

tan2(x)
= − sin(x) �



e. Chain and Power Rules.
dy

dx
=

d

dx
cos

(
x3

)
= − sin

(
x3

)
· d
dx
x3 = −3x2 sin

(
x3

)
�

f. Solve for y first. ex+y = 1 ⇔ x+ y = 0 ⇔ y = −x, so
dy

dx
=

d

dx
(−x) = −1. �

f. Implicit Differentiation.

ex+y = 1 =⇒ d

dx
ex+y =

d

dx
1 =⇒ ex+y d

dx
(x+ y) = 0 =⇒ ex+y

(
1 +

dy

dx

)
= 0

=⇒ 1 +
dy

dx
=

0

ex+y
= 0 =⇒ dy

dx
= −1

Note that ex+y > 0 no matter what (real number) values x and y may have. �
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2. Do any two (2) of parts a–d. [8 = 2 × 4 each]

a. Compute lim
t→0

tan(t)

t
.

b. Use the ε–δ definition of limits to verify that lim
x→2

(2x− 1) = 3.

c. Use the limit definition of the derivative to verify that
d

dx
(x+ 1)2 = 2(x+ 1).

d. Find the equation of the tangent line to y = e2x at x = 0.

Solutions. a. Divide and conquer:

lim
t→0

tan(t)

t
= lim

t→0

sin(t)
cos(t)

t
= lim

t→0

sin(t)

t cos(t)
= lim

t→0

sin(t)

t
· 1

cos(t)

=

(
lim
t→0

sin(t)

t

)
·
(

lim
t→0

1

cos(t)

)
= 1 · 1

cos(0)
=

1

1
= 1 �

b. We need to show that given any ε > 0, one can find a δ > 0, such that (for all x) if
|x− 2| < δ, then |(2x− 1)− 3| < ε.

Suppose we are given some ε > 0. As usual, we reverse-engineer the corresponding δ
from the desired conclusion:

|(2x− 1)− 3| < ε ⇐⇒ |2x− 4| < ε ⇐⇒ 2 |x− 2| < ε ⇐⇒ |x− 2| < ε

2

If we take δ =
ε

2
, then whenever |x − 2| < δ = ε

2 , we get |(2x− 1)− 3| < ε by following

the (fully-reversible!) reasoning above from right to left.
It follows by the ε–δ definition of limits that lim

x→2
(2x− 1) = 3. �

c. By the limit definition of the derivative:

d

dx
(x+ 1)2 = lim

h→0

((x+ h) + 1)
2 − (x+ 1)2

h

= lim
h→0

(
x2 + xh+ x · 1 + hx+ h2 + h · 1 + ·x+ 1 · h+ 12

)
−
(
x2 + 2x+ 1

)
h

= lim
h→0

2hx+ 2h

h
= lim

h→0
(2x+ 2) = 2x+ 2 = 2(x+ 1) �

d. When x = 0, y = e2·0 = e0 = 1, so the tangent line passes through the point (0, 1),
which means that it has a y-intercept of b = 1.

Since
dy

dx
=

d

dx
e2x = e2x · d

dx
(2x) = 2e2x, the slope of the tangent line at x = 0 is

m = dy
dx

∣∣∣
x=0

= 2e2·0 = 2e0 = 2 · 1 = 2.

Thus the equation of the tangent line to y = e2x at x = 0 is y = mx+ b = 2x+ 1. �
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3. Find the domain and any and all intercepts, asymptotes, intervals of increase and
decrease, maximum and minimum points, intervals of curvature, and inflection points

of the function f(x) =
1√

x2 + 1
=

(
x2 + 1

)−1/2
, and sketch its graph. [10]

Solution. We run through the given checklist:

i. Domain. Since x2 + 1 > 0 for all x ∈ R, f(x) =
1√

x2 + 1
is defined for all x too. Note

that since f(x) is a composition of continuous functions, it is continuous wherever it is
defined, which is to say it is continuous everywhere.

ii. Intercepts. Since f(0) =
1√

02 + 1
=

1√
1

=
1

1
= 1, the y-intercept is 1. On the other

hand, since f(x) =
1√

x2 + 1
> 0 for all x, it does not have any x-intercept.

iii. Asymptotes. Since, as noted above, f(x) =
1√

x2 + 1
is defined and continuous for

all x, it cannot have any vertical asymptotes. We compute the usual limits to find any
horizontal asymptotes; note that

√
x2 + 1→ +∞ as x→ −∞ and as x→ +∞:

lim
x→−∞

1√
x2 + 1

→ 1
→ +∞ = 0+

lim
x→+∞

1√
x2 + 1

→ 1
→ +∞ = 0+

It follows that y = f(x) has a horizontal asymptote of y = 0, which it approaches from
above, in both directions.

iv. Intervals of increase and decrease, and maximum and minimum points.

f ′(x) =
d

dx

(
x2 + 1

)−1/2
= −1

2

(
x2 + 1

)−3/2 · d
dx

(
x2 + 1

)
= −1

2

(
x2 + 1

)−3/2 · (2x)

= −x
(
x2 + 1

)−3/2
=

−x(√
x2 + 1

)3
Since x2 + 1 > 0, and hence also

(
x2 + 1

)−3/2
> 0, for all x, f ′(x) = 0, > 0, or < 0,

respectively, exactly when −x = 0, > 0, or < 0, respectively, i.e. exactly when x = 0,
< 0, or > 0, respectively. Since f ′(x) > 0 when x < 0, f(x) is increasing for x < 0, and
f ′(x) < 0 when x > 0, so f(x) is decreasing for x > 0, and so f(x) has a maximum at
x = 0. We summarize this information in a table:

x (−∞, 0) 0 (0,∞)
f ′(x) + 0 −
f(x) ↑ max ↓



v. Intervals of curvature and points of inflection.

f ′′(x) =
d

dx

(
−x

(
x2 + 1

)−3/2)
=

[
d

dx
(−x)

]
·
(
x2 + 1

)−3/2
+ (−x) ·

[
d

dx

(
x2 + 1

)−3/2]
= −1 ·

(
x2 + 1

)−3/2
+ (−x) ·

(
−3

2

)(
x2 + 1

)−5/2 · [ d
dx

(
x2 + 1

)]
= −

(
x2 + 1

)−3/2
+ x · 3

2

(
x2 + 1

)−5/2 · (2x)

= −
(
x2 + 1

) (
x2 + 1

)−5/2
+ 3x2

(
x2 + 1

)−5/2
=

(
−x2 − 1 + 3x2

) (
x2 + 1

)−5/2
=

(
2x2 − 1

) (
x2 + 1

)−5/2
=

2x2 − 1

(x2 + 1)
5/2

=
2x2 − 1(√
x2 + 1

)5
Since x2 + 1 > 0, and hence also

(
x2 + 1

)−5/2
> 0, for all x, f ′(x) = 0, > 0, or < 0,

respectively, exactly when 2x2 − 1 = 0, > 0, or < 0, respectively, i.e. exactly when

x = ± 1√
2

, |x| > 1√
2

, or |x| < 1√
2

, respectively. It follows that f(x) is concave up when

x < − 1√
2

and when x >
1√
2

, and concave down when − 1√
2
< x <

1√
2

, so it has inflection

points when x = ± 1√
2

. We summarize this information in a table:

x
(
−∞,− 1√

2

)
− 1√

2

(
− 1√

2
, 1√

2

)
1√
2

(
1√
2
,∞

)
f ′′(x) + 0 − 0 +
f(x) ^ infl _ infl ^

vi. The graph. It’s cheating, but it’s way more convenient to have a computer do the work.
In this case, it’s a graphing program called kmplot.

�

[Total = 30]


