Mathematics 1110H — Calculus I: Limits, derivatives, and Integrals
TRENT UNIVERSITY, Fall 2019

Solutions to Assignment #4
Not the Zero Function

The following function was used as an example by Augustin-Louis Cauchy when in-
vestigating the convergence of Taylor series.
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1. Verify that f(x) is continuous at x = 0. [4/
SOLUTION. We need to check that lir% f(z) = f(0). Observe that that as x — 0, we have
T—r

22 — 07, so 1/2? — +o0, and hence —1/2% — —oo. It follows that

lim f(z) = lim e /7" = lim e =0= f£(0),
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as desired. O

2. Show that f’(0) is defined and equal to 0. [6]

SOLUTION. Note that f(z) is defined differently at x = 0 than it is for all other points,
which makes it difficult to rely on either definition of f(x) to compute f/'(0) in the usual
way. We will avoid that problem by going back to the limit definition of the derivative,
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fi(z) = }1112% 5 , to compute f(0).
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How do we proceed from here?
e—1/h?

Even though we have . : 8 as h — 0, it is not a good idea to use 'Hopital’s
d —1/h? 9p—1/h
Rule here. Sadly, dhd— works out to ———, which is worse than what we started
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A more promising idea is to use the substitution ¢ = 7 to convert — - e~ (/M* into
t
the easier-to-handle te~t = —z. This does have one complication, though: as h — 0,
e

t = 7 — 400 or —oo depending on whether i — 0% or 07, respectively. This means we

have to compute two limits and hope they work out the same way. First, we compute the
limit as h — 0T:
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Second, we compute the limit as h — 07:
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Since lim — -e =0= lim —-e , we have that lim — - e exists and
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Thus f/(0) = lim — - e~ /" =0, as desired. W
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NOTE. It turns out that the second, third, fourth — every! — derivative of f(x) is defined
and equal to 0 at = 0, making it indistinguishable from the zero function, g(z) = 0 for
all z, as far as far as calculus can determine it from its behavious at z = 0.



