
Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2012–2013

Solutions to the Final Examination

Time: 09:00–12:00, on Thursday, 11 April, 2013. Brought to you by Stefan B�lan�k.
Instructions: Do parts I, J, and K, and, if you wish, part Z. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (101010
neuron limit).

Part I. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. y =
e2x − 1
e2x + 1

b.
y = arctan(t)

x =
1
3
t3 + t

c. y = (1 + sin(x))2

d. tan(y) = x e. y = xe−x f. y =
∫ x

1

ln(t)
t

dt

Solutions. a. We’ll use the Quotient and Chain Rules:

dy

dx
=

d

dx

(
e2x − 1
e2x + 1

)
=

[
d
dx

(
e2x − 1

)] (
e2x + 1

)
−
(
e2x − 1

) [
d
dx

(
e2x + 1

)]
(e2x + 1)2

=

[
e2x d

dx (2x)− 0
] (
e2x + 1

)
−
(
e2x − 1

) [
e2x d

dx (2x) + 0
]

(e2x + 1)2

=
2e2x

(
e2x + 1

)
−
(
e2x − 1

)
2e2x

(e2x + 1)2
=

4e2x

(e2x + 1)2
�

b.
dy

dx
=

dy
dt
dx
dt

=
d
dt arctan(t)
d
dt

(
1
3 t

3 + t
) =

1
1+t2

1
3 · 3t2 + 1

=
1

(1 + t2)2
�

c. We’ll use the Power and Chain Rules:

dy

dx
=

d

dx
(1 + sin(x))2 = 2 (1 + sin(x)) · d

dx
(1 + sin(x))

= 2 (1 + sin(x)) · (0 + cos(x)) = 2 cos(x) (1 + sin(x)) �

d. tan(y) = x =⇒ y = arctan(x), so
dy

dx
=

1
1 + x2

. �

e. We’ll use the Product and Chain Rules:

dy

dx
=

d

dx

(
xe−x

)
=
(
d

dx
x

)
e−x + x

(
d

dx
e−x

)
= 1e−x + xe−x

d

dx
(−x) = e−x + xe−x(−1) = (1− x)e−x �
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f. This is a job for the Fundamental Theorem of Calculus:

dy

dx
=

d

dx

∫ x

1

ln(t)
t

dt =
ln(x)
x

�

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.
∫

sec17(x) tan(x) dx b.
∫ √π

0

z cos
(
z2
)
dz c.

∫
1√

4 + x2
dx

d.
∫ 1

0

arctan(y) dy e.
∫

1
x3 + x

dx f.
∫ ∞

1

1
t2
dt

Solutions. a. We’ll use the substitution u = sec(x), so du = sec(x) tan(x) dx.∫
sec17(x) tan(x) dx =

∫
sec16(x) sec(x) tan(x) dx =

∫
u16 du

=
1
17
u17 + C =

1
17

sec17(x) + C �

b. We’ll use the substitution w = z2, so dw = 2z dz and thus z dz = 1
2 dw, and z 0

√
π

w 0 π
.∫ √π

0

z cos
(
z2
)
dz =

∫ π

0

cos(w)· 1
2
dw =

1
2

sin(w)
∣∣∣∣π
0

=
1
2

sin(π)− 1
2

sin(0) = 0−0 = 0 �

c. We’ll use the trigonometric substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ. Note that

tan(θ) = x
2 and sec(θ) =

√
1 + tan2(θ) =

√
1 + x2

4 .∫
1√

4 + x2
dx =

∫
1√

4 + 4 tan2(θ)
2 sec2(θ) dθ =

∫
2 sec2(θ)√

4
(
1 + tan2(θ)

) dθ
=
∫

2 sec2(θ)√
4 sec2(θ)

dθ =
∫

2 sec2(θ)
2 sec(θ)

dθ =
∫

sec(θ) dθ

= ln (sec(θ) + tan(θ)) + C = ln

(√
1 +

x2

4
+
x

2

)
+ C �

d. We’ll use integration by parts with u = arctan(y) and v′ = 1, so u′ = 1
1+y2 and v = y.

The remaining integral will be done using the substitution w = 1 + y2, so dw = 2y dy, and

thus y dy = 1
2 dw, and y 0 1

w 1 2 .∫ 1

0

arctan(y) dy =
∫ 1

0

uv′ dy = uv|10 −
∫ 1

0

u′v dy = y arctan(y)|10 −
∫ 1

0

y

1 + y2
dy

= [1 arctan(1)− 0 arctan(0)]−
∫ 2

1

1
w

1
2
dw =

[π
4
− 0
]
− 1

2
ln
(

1
w

)∣∣∣∣2
1

=
π

4
−
[

1
2

ln
(

1
2

)
− 1

2
ln
(

1
1

)]
=
π

4
− 1

2
ln
(

1
2

)
�
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e.
1

x3 + x
is a rational function with degree of the denominator, 3, greater than the degree

of the numerator, 0. Since x3 + x = x
(
x2 + 1

)
, where x2 + 1 is an irreducible quadratic

(because x2 + 1 ≥ 0 + 1 = 1 > 0 for all x), we get that

1
x3 + x

=
A

x
+
Bx+ C

x2 + 1
=
A
(
x2 + 1

)
+ (Bx+ C)x

x (x2 + 1)
=

(A+B)x2 + Cx+A

x3 + x

for some unknown constants A, B, and C. Comparing coefficients in the numerators, this
requires that A+B = 0, C = 0, and A = 1, so B = −1. It follows that∫

1
x3 + x

dx =
∫ (

1
x

+
−x

x2 + 1

)
dx =

∫
1
x
dx−

∫
x

x2 + 1
dx = ln(x)−

∫
1
u
· 1

2
du

= ln(x)− 1
2

ln(u) + C = ln(x)− 1
2

ln
(
x2 + 1

)
+ C ,

where we used the substitution u = x2 + 1, so du = 2x dx and x dx = 1
2 du. �

f. We will use the Power Rule along the way:∫ ∞
1

1
t2
dt = lim

z→∞

∫ z

1

1
t2
dt = lim

z→∞

∫ z

1

t−2 dt = lim
z→∞

−t−1
∣∣z
1

= lim
z→∞

−1
t

∣∣∣∣z
1

= lim
z→∞

[
−1
z
−
(
−1

1

)]
= lim
z→∞

[
1− 1

z

]
= 1− 0 = 1 �

3. Do any three (3) of a–f. [15 = 3 × 5 each]

a. Find the radius of convergence of the power series
∞∑
n=0

2n

n2
xn.

b. Sketch the polar curve r = θ, 0 ≤ θ ≤ π, and find the area of the region between
this curve and the origin.

c. Determine whether the series
∞∑
n=0

√
n

(n+ 1)2
converges or diverges.

d. Sketch the region between y = x2 and y =
√
x, 0 ≤ x ≤ 1, and find its area.

e. Sketch the parametric curve x = cos(t), y = sin(t), 0 ≤ x ≤ π, and find its
arc-length.

f. Compute f ′(0) using the limit definition of the derivative if f(x) = x2 + x+ 1.
g. Sketch the solid obtained by revolving the region between y = 1 and y =

√
x,

0 ≤ x ≤ 1, about the y-axis, and find its volume.

Solutions. a. Ahoy, good ship Ratio Test!

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
2n+1

(n+1)2x
n+1

2n

n2 xn

∣∣∣∣∣∣ = lim
n→∞

n2

(n+ 1)2
2|x| = 2|x| lim

n→∞

n2

n2 + 2n+ 1
· 1/n2

1/n2

= 2|x| lim
n→∞

1
1 + 2

n + 1
n2

= 2|x| lim
n→∞

1
1 + 0 + 0

= 2|x|

3



It follows by the Ratio Test that the series converges when 2|x| < 1, that is, when |x| < 1
2 ,

and diverges when 2|x| > 1, that is, when |x| > 1
2 . Hence the radius of convergence of the

given power series is R = 1
2 . �

b. Here’s is the curve, as plotted by Maple:
> with(plots):
> polarplot(t,t=0..Pi)

To find the area of the region between the curve and the origin, we use the usual area
formula for polar regions:

Area =
∫ π

0

1
2
r2 dθ =

∫ π

0

1
2
θ2 dθ =

1
2
· θ

3

3

∣∣∣∣π
0

=
π3

6
− 03

6
=
π3

6
�

c.
∞∑
n=0

√
n

(n+ 1)2
=
∞∑
n=0

n1/2

n2 + 2n+ 1
is a series whose terms are given by a rational function

of n, albeit with a fractional exponent in the numerator. The difference between the degree
of the denominator and the degree of the numerator is p = 2 − 1

2 = 3
2 > 1, so the series

converges by the Generalized p-Test. �
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d. Here’s is the curve, as plotted by Maple:
> plot([[sqrt(t),t,t=0..1],[t^2,t,t=0..1]]s)

The two curves intersect at x = 0 and x = 1; between these two points,
√
x ≥ x2. It

follows that the area between the curves is given by:

Area =
∫ 1

0

(√
x− x2

)
dx =

∫ 1

0

(
x1/2 − x2

)
dx =

(
2
3
x3/2 − 1

3
x3

)∣∣∣∣1
0

=
(

2
3

13/2 − 1
3

13

)
−
(

2
3

03/2 − 1
3

03

)
=

2
3
− 1

3
=

1
3

�

e. Here’s what Maple thinks the curve looks like:
> plot([cos(t),sin(t),t=0..Pi])

(Since x2 + y2 = cos( t) + sin2(t) = 1 for any point on this curve, it is a piece of the unit
circle . . . )

To find the length of the curve, we plug its definition into the variant of the arc-length
formula for parametric curves:

arc-length =
∫ π

0

ds =
∫ π

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt =
∫ π

0

√(
d

dt
cos(t)

)2

+
(
d

dt
sin(t)

)2

dt

=
∫ π

0

√
(− sin(t))2 + (cos(t))2 dt =

∫ π

0

√
sin2(t) + cos2(t) dt =

∫ π

0

√
1 dt

=
∫ π

0

1 dt = t|π0 = π − 0 = π �
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f. Here goes:

f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

f(h)− f(0)
h

= lim
h→0

(
h2 + h+ 1

)
−
(
02 + 0 + 1

)
h

= lim
h→0

h2 + h

h
= lim
h→0

(h+ 1) = 0 + 1 = 1 �

g. Here is Maple’s depiction of the solid in question:
> with(Student[Calculus1]):
> VolumeOfRevolution(1,sqrt(x),x=0..1,axis=vertical,output=plot,

transparency=0.75,title=" ")

We’ll use the disk/washer method to compute the volume of the solid. Since the axis
of revolution was the y-axis, the disks are stacked vertically and we will need to use y as
the basic variable. Note first that 0 ≤ y ≤ 1 over the given region. For any given y in this
range, the disk in question has radius R = x − 0 = x, where y =

√
x, so R = x = y2 in

terms of y. (Note also that each disk has no hole here . . . ) It follows that the volume of
the region is given by:

V =
∫ 1

0

πR2 dy =
∫ 1

0

π
(
y2
)2
dy = π

∫ 1

0

y4 dy = π
y5

5

∣∣∣∣1
0

= π
15

5
− π 05

5
=
π

5
�
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4. Consider the curve y =
x2

2
, for 0 ≤ x ≤ 2.

a. Sketch the curve. [1]

b. Sketch the surface obtained by revolving the curve about the x-axis. [1]

c. Compute either i. the length of the curve
or ii. the area of the surface. [Just one, please!] [8]

Solutions. a. Maple strikes again:

> plot(x^2/2,x=0..2

�

b. . . . and again:

> with(Student[Calculus1]):
> SurfaceOfRevolution(x^2/2,x=0..2,axis=vertical,output=plot,title=" ")

�

Oops! Wrong axis . . .
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c. i.
dy

dx
=

d

dx

x2

2
=

2x
2

= x, so ds =

√
1 +

(
dy
dx

)2

dx =
√

1 + x2 dx. Hence, using the

substitution x = tan(θ), so dx = sec2(θ) and
√

1 + x2 =
√

1 + tan2(θ) =
√

sec2(θ) =
sec(θ):

arc-length =
∫ 2

0

ds =
∫ 2

0

√
1 + x2 dx =

∫ x=2

x=0

sec(θ) sec2(θ) dθ =
∫ x=2

x=0

sec3(θ) dθ

=
[

1
2

sec(θ) tan(θ) +
1
2

ln (sec(θ) + tan(θ))
]∣∣∣∣x=2

x=0

=
[

1
2
x
√

1 + x2 +
1
2

ln
(
x+

√
1 + x2

)]∣∣∣∣2
0

=
[

1
2

2
√

1 + 22 +
1
2

ln
(

2 +
√

1 + 22
)]
−
[

1
2

0
√

1 + 02 +
1
2

ln
(

0 +
√

1 + 02
)]

=
√

5 +
1
2

ln
(

2 +
√

5
)
− 0− 1

2
ln(1) =

√
5 +

1
2

ln
(

2 +
√

5
)

�

c. ii.
dy

dx
=

d

dx

x2

2
=

2x
2

= x, so ds =

√
1 +

(
dy
dx

)2

dx =
√

1 + x2 dx. Also, since we

are revolving the curve about the x-axis, the point at x on the curve is revolved around a
circle with radius r = y− 0 = x2

2 . Hence, using the trigonometric substitution x = tan(θ),
so dx = sec2(θ) and

√
1 + x2 =

√
1 + tan2(θ) =

√
sec2(θ) = sec(θ)::

surface area =
∫ 2

0

2πr ds =
∫ 2

0

2π
x2

2

√
1 + x2 dx =

∫ x=2

x=0

π
tan2(θ)

2
sec(θ) dθ

=
π

2

∫ x=2

x=0

tan2(θ) sec(θ) dθ =
π

2

∫ x=2

x=0

(
sec2(θ)− 1

)
sec(θ) dθ

=
π

2

∫ x=2

x=0

sec3(θ) dθ − π

2

∫ x=2

x=0

sec(θ) dθ

=
π

2

[
1
2
x
√

1 + x2 +
1
2

ln
(
x+

√
1 + x2

)]∣∣∣∣2
0

− π

2

[
ln
(
x+

√
1 + x2

)]∣∣∣2
0

=
π

2

[
1
2
x
√

1 + x2 − 1
2

ln
(
x+

√
1 + x2

)]∣∣∣∣2
0

=
π

2

[
1
2

2
√

1 + 22 − 1
2

ln
(

2 +
√

1 + 22
)]

− π

2

[
1
2

0
√

1 + 02 − 1
2

ln
(

0 +
√

1 + 02
)]

=
π

2

[√
5− 1

2
ln
(

2 +
√

5
)
− 0 +

1
2

ln(1)
]

=
π

2

[√
5− 1

2
ln
(

2 +
√

5
)]

�
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Part J. Do any two (2) of 5–7. [30 = 2 × 15 each]

5. Gravel is dumped from a conveyor belt at a rate of 3 m3/min. At any given instant
the gravel forms a conical pile whose height is twice the radius of the base. How fast is
the height of the pile increasing at the instant that the pile is 1 m high? [The volume
of a cone with height h and base radius r is 1

3πr
2h.]

Solution. Since the height of the conical pile is always twice the radius of the base, i.e.

h = 2r or r =
h

2
, the volume of the cone is given by V =

1
3
πr2h =

1
3
π

(
h

2

)2

h =
πh3

12
. It

follows that

3 =
dV

dt
=

d

dt

1
12
πh3 =

(
d

dh

πh3

12

)
· dh
dt

=
πh2

4
· dh
dt
,

so
dh

dt
=

12
πh2

at any given instant. Plugging in h = 1 m then gives

dh

dt

∣∣∣∣
h=1 m

=
12
π12

=
12
π
m/s . �

6. Find any and all intercepts, maximum, minimum, and inflection points, and vertical
and horizontal asymptotes of f(x) = e1/x, and sketch its graph.

Solution. We run through the usual checklist:

i. (Domain) Since 1/x is defined (and continuous and differentiable) for all x 6= 0 and
et is defined (and continuous and differentiable) for all t, f(x) = e1/x is defined (and
continuous and differentiable) for all x 6= 0. �

ii. (Intercepts) f(x) = e1/x is not defined at x = 0, so there is no y-intercept. Since
et > 0 for all t, f(x) = e1/x > 0 for all x 6= 0, so there is no x-intercept either. �

iii. (Vertical asymptotes) Since f(x) = e1/x is defined and continuous for all x 6= 0, the
only place there might be a vertical asymptote is at x = 0. Let’s check:

lim
x→0+

e1/x = +∞ since
1
x
→ +∞ as x→ 0+ and et → +∞ as t = 1/x→ +∞

lim
x→0−

e1/x = 0 since
1
x
→ −∞ as x→ 0− and et → 0 as t = 1/x→ −∞

It follows that f(x) = e1/x has a vertical asymptote on the positive side of x = 0, but
no vertical asymptote on the negative side. �

iv. (Horizontal asymptotes) Let’s check:

lim
x→+∞

e1/x = 1 since
1
x
→ 0 as x→ +∞ and et → 1 as t = 1/x→ 0

lim
x→−∞

e1/x = 1 since
1
x
→ 0 as x→ −∞ and et → 1 as t = 1/x→ 0
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Thus f(x) = e1/x has a horizontal asymptote of y = 1 in both directions. �

v. (Maxima and minima) f ′(x) =
d

dx
e1/x = e1/x · d

dx

(
1
x

)
= e1/x

(
−1
x2

)
= −e

1/x

x2
is,

like f(x) = e1/x, defined and continuous for all x 6= 0. Note that since e1/x > 0 and
x2 > 0 for all x 6= 0, f ′(x) < 0 for all x 6= 0. It follows that f(x) is decreasing for all
x for which it is defined; in particular, it has no critical points and no local maxima
or minima.

vi. (Curvature and inflection) First,

f ′′(x) =
d

dx

(
−e

1/x

x2

)
= −

(
d
dxe

1/x
)
x2 − e1/x

(
d
dxx

2
)

(x2)2
= −
− e

1/x

x2 x
2 − 2xe1/x

x4

= −−e
1/x − 2xe1/x

x4
=

(1 + 2x)e1/x

x4
,

which is defined, just as f(x) and f ′(x) are, for all x 6= 0. Note that since e1/x > 0
whenever it is defined, f ′′(x) = 0 exactly when 1 + 2x = 0, i.e. when x = − 1

2 . Since

x4 > 0 for all x, we also have that f ′′(x) = (1+2x)e1/x

x4
<

>
0 exactly when 1 + 2x<

>
0.

Putting this information in the usual table gives us:

x
(
−∞, 1

2

)
1
2

(
1
2 , 0
)

0 (0,∞)
f ′′(x) − 0 + undef. +
f(x) _ infl. pt. ^ undef. ^

Thus f(x) has one inflection point, at x = 1
2 . �

vii. (Graph) Here it is, at last, courtesy of Maple:
> plot(exp(1/x),x=-5..5,y=0..5)

�

7. Sketch the solid obtained by revolving the region between y = x and y = x2, for
0 ≤ x ≤ 1, about the line x = −2 and find its volume.

Solution. Here is Maple’s idea of a sketch of the solid:

> with(Student[Calculus1]):
> VolumeOfRevolution(x,x^2,x=0..1,axis=vertical,distancefromaxis=-2,

10



output=plot,transparency=0.75,title=" ")

Since we used the disk/washer method in the solution to 3g, we’ll use the cylindrical
shell method here to compute the volume of the solid. Note that if 0 ≤ x ≤ 1, then x2 ≤ x,
so the height of the shell at x is given by h = x−x2. The shell at x is obtained by revolving
a vertical cross-section of the original region about the line x = −2, so the radius of the
shell at x is given by r = x − (−2) = x + 2. Plugging these into the volume formula for
the cylindrical shell method gives:

V =
∫ 1

0

2πrh dx =
∫ 1

0

2π(x+ 2)
(
x− x2

)
dx = 2π

∫ 1

0

(
−x3 − x2 + 2x

)
dx

= 2π
(
−x

4

4
− x3

3
+ x2

)∣∣∣∣1
0

= 2π
(
−14

4
− 13

3
+ 12

)
− 2π

(
−04

4
− 03

3
+ 02

)
= 2π

5
12
− 2π0 =

5π
6

�

Part K. Do one (1) of 8 or 9. [15 = 1 × 15 each]

8. Let f(x) =
1

(2 + x)2
.

a. Use Taylor’s formula to find the Taylor series at 0 of f(x). [10]

b. Find the radius and interval of convergence of this Taylor series. [5]

c. [Bonus!] Find the Taylor series at 0 of f(x) without using Taylor’s formula. [1]

Solutions. a. We’ll grind out derivatives of f(x) =
1

(2 + x)2
= (2 + x)−2 at 0, looking

11



for patterns we can plug into Taylor’s formula.

n f (n)(x) f (n)(0)
0 (2 + x)−2 2−2 = 1

4
1 −2(2 + x)−3 (−1)2 · 2−3 = − 1

4
2 (−2)(−3)(2 + x)−4 (−1)22 · 3 · 2−4 = 3

8
3 (−2)(−3)(−4)(2 + x)−5 (−1)32 · 3 · 4 · 2−5 = − 3

4
...

...
...

n (−2)(−3) · · · (−n− 1)(2 + x)−n−2 (−1)n(n+ 1)!2−n−2 = (−1)n(n+1)!
2n+2

...
...

...

Plugging f (n)(0) =
(−1)n(n+ 1)!

2n+2
into Taylor’s formula tells us that the Taylor series at 0

of f(x) =
1

(2 + x)2
is

∞∑
n=0

f (n)(0)
n!

xn =
∞∑
n=0

(−1)n(n+1)!
2n+2

n!
xn =

∞∑
n=0

(−1)n(n+ 1)
2n+2

xn . �

b. To find the radius of convergence, we try the Ratio Test:

lim
n→∞

∣∣∣∣∣
(−1)n+1((n+1)+1)

2(n+1)+2 xn+1

(−1)n(n+1)
2n+2 xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1 ((n+ 1) + 1)
2(n+1)+2

xn+1 · 2n+2

(−1)n(n+ 1)xn

∣∣∣∣
= lim
n→∞

∣∣∣∣ (−1)x(n+ 2)
2(n+ 1)

∣∣∣∣ =
|x|
2

lim
n→∞

n+ 2
n+ 1

=
|x|
2

lim
n→∞

n+ 2
n+ 1

·
1
n
1
n

=
|x|
2

lim
n→∞

1 + 2
n

1 + 1
n

=
|x|
2
· 1 + 0

1 + 0
=
|x|
2

It follows that the Taylor series of f(x) converges (absolutely) when |x|
2 < 1, i.e. when

|x| < 2, and diverges when |x|2 > 1, i.e. when |x| > 2. The radius of convergence of the
series is therefore R = 2.

To find the interval of convergence we need to determine whether the series converges
or diverges at x = ±R = ±2. First, when x = −2, we get the series

∞∑
n=0

(−1)n

2n+2
(−2)n =

∞∑
n=0

(−1)n(−1)n2n

2n+2
=
∞∑
n=0

1
22

=
∞∑
n=0

1
4
,

which diverges by the Divergence Test since lim
n→∞

1
4

=
1
4
6= 0. Second, when x = +2, we

get the series
∞∑
n=0

(−1)n

2n+2
2n =

∞∑
n=0

(−1)n

22

∞∑
n=0

(−1)n

4
,
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which also diverges by the Divergence Test since lim
n→∞

(−1)n

4
does not exists and hence is

6= 0. It follows that the interval of convergence of the Taylor series of f(x) is (−2, 2). �

c. There’s a reason this one is a bonus – you have to put together several different things:

1
(2 + x)2

= (2 + x)−2 = − d

dx
(2 + x)−1 =

d

dx

(
−1

2 + x

)
=

d

dx

(
−1

2 + x
·

1
2
1
2

)
=

d

dx

( − 1
2

1 + x
2

)
=

d

dx

(
− 1

2

1−
(
−x2
)) =

d

dx

(
−1

2
+
x

4
− x2

8
+
x3

16
− · · ·

)
=

d

dx

(
−1

2

)
+

d

dx

(x
4

)
− d

dx

(
x2

8

)
+

d

dx

(
x3

16

)
− · · ·

= 0 +
1
4
− 2x

8
+

3x2

16
− · · ·+ (−1)n(n+ 1)xn

2n+2
+ · · · =

∞∑
n=0

(−1)n(n+ 1)xn

2n+2

If a function is equal to a power series, then that series is its Taylor series, so . . . �
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9. Consider the series
∞∑
n=1

(−1)n(z − 2)n

2n
, where z is an unknown.

a. Determine for which values of z the series converges. [10]
b. Find a function g(z) equal to this series when it converge. [5]

Solutions. a. Just for fun, we’ll use the Root Test. (The Ratio Test works well here,
too.)

lim
n→∞

n
√
|an| = lim

n→∞
n

√∣∣∣∣ (−1)n(z − 2)n

2n

∣∣∣∣ = lim
n→∞

n

√
|z − 2|n

2n
= lim
n→∞

|z − 2|
2

=
|z − 2|

2

It follows that the series converges when |z−2|
2 < 1, i.e. |z − 2| < 2 (that is, 0 < z < 4),

and diverges when |z−2|
2 > 1, i.e. |z − 2| > 2 (that is, z < 0 or z > 4).

This still leaves the question of what happens when |z − 2| = 2, that is, when z = 0
or z = 4. When z = 0, we get the series

∞∑
n=1

(−1)n(0− 2)n

2n
=
∞∑
n=1

(−1)n(−1)n2n

2n
=
∞∑
n=1

1 ,

which diverges by the Divergence Test because lim
n→∞

1 = 1 6= 0. When z = 4, we get the
series

∞∑
n=1

(−1)n(4− 2)n

2n
=
∞∑
n=1

(−1)n2n

2n
=
∞∑
n=1

(−1)n ,

which diverges by the Divergence Test because lim
n→∞

(−1)n does not exist, so does 6= 0.
Thus the series converges exactly when 0 < z < 4, and diverges otherwise. �

Note: a is much easier if you notice that the series is a geometric series with a = r =
−(z − 2)/2.

b. As noted just above, the given series is a geometric series with a = r = −(z − 2)/2.
When it converges, its sum is therefore

g(z) =
a

1− r
=

− z−2
2

1−
(
− z−2

2

) =
−(z − 2)

2
(
1 + z−2

2

) =
2− z

2 + z − 1
=

2− z
1 + z

. �

[Total = 100]
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Part Z. Bonus problems! Do them (or not – less for me to mark! :-), if you feel like it.

0. Recall that an integer greater than 1 is a prime number if it has no positive integer
factors other than itself and 1. Does the polynomial p(x) = x2 + x + 41 always
give you a prime number as its output whenever x is an integer greater than or
equal to zero? Explain why or why not. [1]

Solution. It does not always give you a prime number when x is an integer greater than
or equal to zero, though it does give you prime numbers for x = 0, 1, . . . , 40. However,
p(41) = 412 + 41 + 41 = 41(41 + 1 + 1) = 41 · 43, so it is not prime. �

00. Write a haiku touching on calculus or mathematics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

I hope you have even more fun this summer
than you did in this course!
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