
Mathematics 1101Y – Calculus I: Functions and calculus of one variable
Trent University, 2011–2012

Quizzes

Quiz #1. Monday, 19 September, 2011. [10 minutes]

1. Find the intercepts of the parabola y = x2 − 2x− 3, and sketch its graph. [5]

Solution. The y-intercept is obtained by plugging x = 0 into the equation of parabola.
Since y = 02 − 2 · 0− 3 = −3, the parabola meets the y-axis at the point (0,−3).

The x-intercepts are the values of x for which y = x2− 2x− 3 = 0; we find these with
the help of the quadratic formula:

x =
−(−2)±

√
(−2)2 − 4 · 1 · (−3)

2 · 1
=

2±
√

16

2
=

2± 4

2
= 1± 2 =

{
1− 2 = −1
1 + 2 = 3

It follows that the parabola meets the x-axis at the points (−1, 0) and (2, 0).
Alternatively, one could find the x-intercepts by factoring the quadratic expression

x2 − 2x− 3 in some way. Since x2 − 2x− 3 = (x + 1)(x− 3), we get zero at x = −1 and
x = 3, respectively.

The intercepts obtained above and the knowledge that the parabola opens upward
because x2 has a positive coefficient is enough for a crude sketch of the parabola. (One
could plot a few more points easily enough, too.) We cheat slightly and use Maple – the
old-worksheet-style command

> plot(x^2-2*x-3,x=-2..4,y=-5..6);

generates the following graph:

�
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Quiz #2. Monday, 26 September, 2011. [10 minutes]

1. Let f(x) = 2 tan(x) − 2, where −π2 < x < π
2 . Find a formula for f−1(x) and graph

both f(x) and f−1(x). [5]

Solution. To find a formula for f−1(x), we solve for x in terms of y in the equation
y = 2 tan(x)− 2,

y = 2 tan(x)− 2 ⇐⇒ y + 2 = 2 tan(x) ⇐⇒ y + 2

2
= tan(x)

⇐⇒ arctan

(
y + 2

2

)
= x ,

and then interchange the roles of x and y: f−1(x) = y = arctan

(
x+ 2

2

)
.

Here is the procedure for generating the graph of f(x) = 2 tan(x)− 2 from the graph
of tan(x) (which you should really try to remember). We stick to −π2 < x < π

2 , of course:

To get the graph of f−1(x), you can simply reflect the graph of f(x) in the line y = x:

Alternatively, you could follow a procedure similar to how the graph of f(x) = 2 tan(x)−2
was obtained above to get the graph of f−1(x) from the graph of arctan(x), assuming you
remember what that looks like. �
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Quiz #3. Monday, 3 October, 2011. [10 minutes]

1. Compute lim
x→2

x2 − x− 2
√
x−
√

2
. [5] Hint: x2 − x− 2 = (x− 2)(x+ 1).

Solution. If x is positive, which it must be if it is near 2, then x = (
√
x)

2
. It follows that

x2 − x− 2 = (x− 2)(x+ 1)

=

((√
x
)2 − (√2

)2)
(x+ 1)

=
(√

x−
√

2
)(√

x+
√

2
)

(x+ 1) ,

so

lim
x→2

x2 − x− 2
√
x−
√

2
= lim
x→2

(√
x−
√

2
) (√

x+
√

2
)

(x+ 1)
√
x−
√

2

= lim
x→2

(√
x+
√

2
)

(x+ 1)

1

=
(√

2 +
√

2
)

(2 + 1)

= 2
√

2 · 3
= 6
√

2 . �

Quiz #4. Tuesday, 11 October, 2011. [10 minutes]

1. Explain why f(x) =
sin(x)

x
is not continuous at x = 0 and determine what kind of

discontinuity it has there (removable, jump, or vertical asymptote). [5]

Solution. f(x) =
sin(x)

x
cannot be continuous at x = 0 because it is not even defined at

x = 0.
To determine the type of discontinuity it has at x = 0 we need to compute and then

compare lim
x→0−

f(x) and lim
x→0+

f(x):

lim
x→0−

f(x) = lim
x→0−

sin(x)

x
= 1

lim
x→0+

f(x) = lim
x→0+

sin(x)

x
= 1

(As lim
x→0

sin(x)
x = 1, both one-sided limits must exist and also be equal to 1.) Since

lim
x→0−

f(x) = lim
x→0+

f(x) = 1, it follows that f(x) =
sin(x)

x
has a removable discontinu-

ity at x = 0. �
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Quiz #5. Monday, 31 October, 2011. [10 minutes]

1. Compute
dy

dx
if y =

x−1 + x

ex
.

Solution. We throw the Quotient, Sum, and Power Rules, as well as the fact that
d
dxe

x = ex, at the problem:

dy

dx
=

d

dx

(
x−1 + x

ex

)
=

[
d
dx

(
x−1 + x

)]
· ex −

(
x−1 + x

)
·
[
d
dxe

x
]

(ex)
2

=

[
d
dxx
−1 + d

dxx
]
· ex −

(
x−1 + x

)
· ex

(ex)
2

=

[
(−1)x−2 + 1

]
· ex −

(
x−1 + x

)
· ex

(ex)
2

=

[
(−1)x−2 + 1

]
−
(
x−1 + x

)
ex

=
1− x− x−1 − x−2

ex
�

Quiz #6. Monday, 7 November, 2011. [10 minutes]

1. Compute
dy

dx

∣∣∣∣
(x,y)=(0,0)

if x = sin(x+ y). [5]

Solution. Our main tool will be implicit differentiation. Differentiating both sides of
x = sin(x+ y) gives:

1 =
d

dx
x =

d

dx
sin(x+ y) = cos(x+ y) · d

dx
(x+ y) = cos(x+ y) ·

(
1 +

dy

dx

)
We solve this for

dy

dx
:

cos(x+ y) ·
(

1 +
dy

dx

)
= 1 =⇒ 1 +

dy

dx
=

1

cos(x+ y)
= secx+ y =⇒ dy

dx
= sec(x+ y)− 1

Plugging in (x, y) = (0, 0) now gives:

dy

dx

∣∣∣∣
(x,y)=(0,0)

= (sec(x+ y)− 1)|(x,y)=(0,0) = sec(0 + 0)− 1 = sec(0)− 1 = 1− 1 = 0

Note that sec(0) =
1

cos(0)
=

1

1
= 1. �

Note: One could also solve for y as a function of x, y = arcsin(x)− x, and then differen-
tiate. This requires knowing, or working out, the derivative of arcsin(x).
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Quiz #7. Monday, 14 November, 2011. [12 minutes]

1. Puppies S and E are sniffing a fire hydrant when they are startled by a loud noise,
and immediately run off in perpendicular directions. S runs South at 9 m/s and E
runs East at 12 m/s. How is the distance between the puppies changing 1 s after they
hear the noise?

Solution. Let S and E denote the distance travelled by S and E, respectively. Then
dS
dt = 9 m/s and dE

dt = 12 m/s, so after 1 s we have S = 9 m and E = 12 m, respectively.
At any moment, S and E are the short sides of a right triangle, so the distance between
the puppies is D =

√
S2 + E2. It follows that

dD

dt
=

d

dt

√
S2 + E2 =

d

dt

(
S2 + E2

)1/2
=

1

2

(
S2 + E2

)−1/2 · d
dt

(
S2 + E2

)
=

1

2

(
S2 + E2

)−1/2 · ( d

dt
S2 +

d

dt
E2

)
=

1

2

(
S2 + E2

)−1/2 · (S2

dS
· dS
dt

+
E2

dE
· dE
dt

)
=

1

2

(
S2 + E2

)−1/2 · (2S
dS

dt
+ 2E

dE

dt

)
=
S dSdt + E dE

dt√
S2 + E2

.

When t = 1 s, we get:

dD

dt

∣∣∣∣
t=1

=
S dSdt + E dE

dt√
S2 + E2

∣∣∣∣∣
t=1

=
9 · 9 + 12 · 12√

92 + 122
=
√

92 + 122 =
√

81 + 144 =
√

225 = 15

Thus the distance between the puppies is increasing at a rate of 15 m/s 1 s after they hear
the noise. �

Quiz #8. Monday, 21 November, 2011. [10 minutes]

1. Find the maxima and minima of f(x) = 4x3 − 12x on the interval [0, 2]. [5]

Solution. First, we find the critical points of f(x). Since f(x) is polynomial, it is defined
and differentiable everywhere, so we only need to worry about critical points where the
derivative is 0.

f ′(x) =
d

dx

(
4x3 − 12x

)
= 4 · 3x2 − 12 · 1 = 12x2 − 12 = 12(x− 1)(x+ 1)

It follows that f ′(x) = 12(x − 1)(x + 1) = 0 exactly when x = 1 or x = −1. Only one of
these, x = 1, is in [0, 2], so it’s the only one we need to consider.

We now check the values of f(x) on the endpoints of the interval and at the critical
point in the interval:

x 0 1 2
f(x) 0 −8 8

Thus the maximum of f(x) = 4x3 − 12x on the interval [0, 2] is 8, at the endpoint
x = 2, and the minimum is −8, at the critical point x = 1. �
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Quiz #9. Monday, 28 November, 2011. [20 minutes]

1. Find the domain and any (and all!) intercepts, vertical and horizontal asymptotes,

local maxima and minima, and points of inflection of h(x) =
x2 − 1

x2 + 1
, and sketch its

graph. [5]

Solution. We run through the usual checklist in all too much detail, though we won’t
worry about the range and symmetry of h(x) because they weren’t asked for.

i. Domain. h(x) =
x2 − 1

x2 + 1
is a rational function, so it is defined for all x for which the

denominator is not equal to 0. Since x2 + 1 ≥ 1 > 0 for all x, it follows that the domain
of h(x) is R = (−∞,+∞). �

ii. Intercepts. h(0) =
02 − 1

02 + 1
= −1, so the y-intercept of h(x) is y = −1. Since

h(x) =
x2 − 1

x2 + 1
= 0⇐= x2 − 1 = 0⇐= x2 = 1⇐= x = ±1 ,

h(x) has x-intercepts at x = ±1. �

iii. Vertical asymptotes. Since h(x) is a rational function, it is continuous everywhere it is
defined; since it is defined everywhere, it follows that it has no discontinuities, and hence
no vertical asymptotes. �

iv. Horizontal asymptotes. We compute the limits of h(x) as x→ ±∞:

lim
x→−∞

x2 − 1

x2 + 1
= lim
x→−∞

x2 − 1

x2 + 1
·

1
x2

1
x2

= lim
x→−∞

1− 1
x2

1 + 1
x2

=
1− 0

1 + 0
= 1

lim
x→+∞

x2 − 1

x2 + 1
= lim
x→+∞

x2 − 1

x2 + 1
·

1
x2

1
x2

= lim
x→+∞

1− 1
x2

1 + 1
x2

=
1− 0

1 + 0
= 1

(Note that 1
x2 → 0 as x→ ±∞.) It follows that h(x) has a horizontal asymptote of y = 1

in both directions.
The sharp-eyed may observe that the computation above is somewhat redundant:

since h(x) has even symmetry, the limit has to be the same in both directions. In addition,
since x2 − 1 < x2 + 1 for all x, h(x) must approach the asymptote y = 1 from below. �

v. Maxima and minima. First, we find h′(x):

h′(x) =
d

dx

(
x2 − 1

x2 + 1

)
=

d
dx

(
x2 − 1

)
·
(
x2 + 1

)
−
(
x2 − 1

)
· ddx

(
x2 + 1

)
(x2 + 1)

2

=
2x
(
x2 + 1

)
−
(
x2 − 1

)
2x

(x2 + 1)
2 =

4x

(x2 + 1)
2

Second, we find the critical points:

h′(x) =
4x

(x2 + 1)
2 = 0⇐⇒ 4x = 0⇐⇒ x = 0

6



(Note that h′(x) is also defined for all x, so we need not consider critical points of the

second type, where h′(x) is undefined.) Third, observe that since
(
x2 + 1

)2
> 0 for all x:

h′(x) =
4x

(x2 + 1)
2

<
>

0⇐⇒ 4x
<
>

0⇐⇒ x
<
>

0

Thus, constructing the usual table,

x (−∞, 0) 0 (0,∞)
h′(x) − 0 +
h(x) ↓ min ↑

,

we see that h(x) has a local minimum at x = 0. Note that h(0) = −1. �

vi. Inflection points and concavity. First, we find h′′(x):

h′(x) =
d

dx

(
4x

(x2 + 1)
2

)
=

d
dx (4x) ·

(
x2 + 1

)2 − 4x · ddx
(
x2 + 1

)2
(x2 + 1)

2

=
4
(
x2 + 1

)2 − 4x · 2
(
x2 + 1

)
2x

(x2 + 1)
4

=
4
(
x2 + 1

)
− 4x · 2 · 2x

(x2 + 1)
3 =

4− 12x2

(x2 + 1)
3

Second, we find the points where h′′(x) = 0:

h′′(x) =
4− 12x2

(x2 + 1)
3 = 0⇐⇒ 4− 12x2 = 4

(
1− 3x2

)
= 0

⇐⇒ 3x2 = 1⇐⇒ x2 =
1

3
⇐⇒ x = ± 1√

3

(Note that h′′(x) is also defined for all x – since
(
x2 + 1

)3 ≥ 1 > 0 for all x – so we need
not consider potential inflection points where h′′(x) is undefined.) Third, observe that

since
(
x2 + 1

)3
> 0 for all x:

h′′(x) =
4− 12x2

(x2 + 1)
3

<
>

0⇐⇒ 4− 12x2 = 4
(
1− 3x2

) <
>

0⇐⇒ 3x2
>
<

1⇐⇒
|x| > 1√

3

|x| < 1√
3

Thus, constructing the usual table,

x
(
−∞,− 1√

3

)
− 1√

3

(
− 1√

3
, 1√

3

)
1√
3

(
1√
3
,∞
)

h′′(x) − 0 + 0 −
h(x) _ ^ _

,

we see that h(x) has two inflection points, at x = ± 1√
3
. �
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vi. The graph. We cheat slightly by having Maple draw the graph of h(x). The old
worksheet-style command

> plot((x^2-1)/(x^2+1),x=-5..5);

generates the following graph:

�

Quiz #10. Monday, 5 December, 2011. [12 minutes]

1. Compute

∫ 2

1

x2 dx using the Right-Hand Rule. [5]

Solution. Recall from class that the Right-Hand Rule formula is∫ b

a

f(x) dx = lim
n→∞

b− a
n

n∑
i=1

f

(
a+

b− a
n

i

)
.

We plug the given definite integral into this formula and chug away:∫ 2

1

x2 dx = lim
n→∞

2− 1

n

n∑
i=1

f

(
1 +

2− 1

n
i

)
= lim
n→∞

1

n

n∑
i=1

f

(
1 +

1

n
i

)

= lim
n→∞

1

n

n∑
i=1

(
1 +

1

n
i

)2

= lim
n→∞

1

n

n∑
i=1

[
12 + 2 · 1 · 1

n
i+

(
1

n
i

)2
]

= lim
n→∞

1

n

n∑
i=1

[
1 +

2

n
i+

1

n2
i2
]

= lim
n→∞

1

n

[(
n∑
i=1

1

)
+

(
n∑
i=1

2

n
i

)
+

(
n∑
i=1

1

n2
i2

)]

= lim
n→∞

1

n

[
n+

2

n

(
n∑
i=1

i

)
+

1

n2

(
n∑
i=1

i2

)]

= lim
n→∞

1

n

[
n+

2

n
· n(n+ 1)

2
+

1

n2
· n(n+ 1)(2n+ 1)

6

]
= lim
n→∞

1

n

[
n+ (n+ 1) +

2n2 + 3n+ 1

6n

]
= lim
n→∞

1

n

[
2n+ 1 +

n

3
+

1

2
+

1

6n

]
= lim
n→∞

1

n

[
7

3
n+

3

2
+

1

6n

]
= lim
n→∞

[
7

3
+

3

2n
+

1

6n2

]
=

7

3
+ 0 + 0 =

7

3
�
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Quiz #11. Monday, 9 January, 2012. [10 minutes]

1. Compute

∫
2 sin(x) cos(x)esin

2(x) dx. [5]

Solution. We will use the Substitution Rule. Let u = sin2(x); then

du

dx
=

d

dx
sin2(x) = 2 sin(x) · d

dx
sin(x) = 2 sin(x) cos(x) ,

so
du = 2 sin(x) cos(x) dx ,

which is conveniently available in the integrand. It follows that∫
2 sin(x) cos(x)esin

2(x) dx =

∫
eu du = eu + C = esin

2(x) + C .

Note that since we are computing an indefinite integral (i.e. a generic antiderivative), we
need to include a generic constant. �

Quiz #12. Monday, 16 January, 2012. [10 minutes]

1. Sketch the solid obtained by revolving the region between y = 1
3x and y = 0 for

0 ≤ x ≤ 3 about the x-axis and find its volume. [5]

Solution. Here’s a sketch of the solid, a cone with base radius 1 and height 3 placed
horizontally instead of vertically:

We will find the volume of the solid by using the disk/washer method. Since we
obtained the solid by revolving the region about a horizontal line, namely the x-axis, we
will need to integrate with respect to x using the limits 0 to 3 given by the original region.
For each x, the cross-section is a washer with outside radius R = y − 0 = 1

3x and inside
radius r = 0− 0 = 0. Thus the volume of the solid is:∫ 3

0

(
R2 − r2

)
dx =

∫ 3

0

((
1

3
x

)2

− 02

)
dx =

∫ 3

0

1

9
x2 dx

=
1

9
· x

3

3

∣∣∣∣3
0

=
1

27
33 − 1

27
03 =

1

27
27− 0 = 1 �
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Quiz #13. Monday, 23 January, 2012. [10 minutes]

1. Sketch the solid obtained by revolving the region between y = x2 and y = 4 for
1 ≤ x ≤ 2 about the y-axis and find its volume. [5]

Solution. Here’s a crude sketch of the solid:

We will find the volume of this solid using both the washer and cylindrical shell methods.

Using washers: Since the axis of revolution is vertical, the washers are horizontal and
stacked vertically, which means we will need to integrate with respect to y. Note that
the range of possible y values for the region is (since 12 = 1) 1 ≤ y ≤ 4. The left edge
of the region revolved to make the solid is given by x = 1, so the washer for a given y
has inside radius r = x − 0 = 1 − 0 = 1. Since the right edge of the region is given
by y = x2, i.e. x =

√
(y), the outside radius of the washer for a given y is given by

R = x − 0 =
√
y − 0 =

√
y. We plug all this into the integral formula for the volume of

the solid:∫ 4

1

π
(
R2 − r2

)
dy = π

∫ 4

1

(
(
√
y)

2 − 12
)
dy = π

∫ 4

1

(y − 1) dy = π

(
y2

2
− y
)∣∣∣∣4

1

= π

(
42

2
− 4

)
− π

(
12

2
− 1

)
= π (8− 4)− π ·

(
−1

2

)
=

9

2
π

Using cylindrical shells: Since the axis of revolution is vertical, we need to integrate with
respect to the horizontal variable, namely x. The range of possible x values for the region
is 1 ≤ x ≤ 2 (since 22 = 4). The radius of the washer at x is just r = x − 0 = x and its
height is h = 4− x2. We plug all this into the integral formula for the volume of the solid:∫ 2

1

2πrh dx = 2π

∫ 2

1

x
(
4− x2

)
dx = 2π

∫ 2

1

(
4x− x3

)
dx = 2π

(
4
x2

2
− x4

4

)∣∣∣∣2
1

= 2π

(
2 · 22 − 24

4

)
− 2π

(
2 · 12 − 14

4

)
= 2π(8− 4)− 2π

(
2− 1

4

)
= 8π − 7

2
π =

9

2
π �
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Quiz #14. Monday, 6 February, 2012. [10 minutes]

1. Compute

∫
1√

4 + x2
dx. [5]

Solution. We will use the trigonometric substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ.∫
1√

4 + x2
dx =

∫
1√

4 + (2 tan(θ))
2
· 2 sec2(θ) dθ =

∫
2 sec2(θ)√

4 + 4 tan2(θ)
dθ

=

∫
2 sec2(θ)√

4
(
1 + tan2(θ)

) dθ =

∫
2 sec2(θ)√
4 sec2(θ)

dθ

=

∫
2 sec2(θ)

2 sec(θ)
dθ =

∫
sec(θ) dθ = ln (sec(θ) + tan(θ)) + C

= ln

(√
1 + tan2(θ) + tan(θ)

)
+ C = ln

(√
1 +

(x
2

)2
+
x

2

)
+ C

= ln

(√
1 +

x2

4
+
x

2

)
+ C �

Quiz #15. Monday, 13 February, 2012. [20 minutes]

1. Compute

∫
4

x3 + 4x
dx. [5]

Solution. We will use partial fractions to take the integral apart. First, we factor the
denominator as far as we can: x3 + 4x = x

(
x2 + 4

)
. Note that x2 + 4 ≥ 4 > 0 for all x,

so x2 + 4 has no roots and so is irreducible. It follows that∫
4

x3 + 4x
dx =

∫
A

x
dx+

∫
Bx+ C

x2 + 4
dx

for some constants A, B, and C we need to determine. Since

4

x3 + 4x
=
A

x
+

Bx+ C

x (x2 + 4)
=
A
(
x2 + 4

)
+ (Bx+ C)x

x (x2 + 4)
=

(A+B)x2 + Cx+ 4A

x3 + 4x
,

we must have A + B = 0, C = 0, and 4A = 4. C is already nailed down here; from the
last of these we get A = 1, and it now follows from the first that B = −1. Hence,∫

4

x3 + 4x
dx =

∫
1

x
dx+

∫
−x+ 0

x2 + 4
dx = ln(x)−

∫
1

u
· 1

2
du = ln(x)− 1

2
ln(u) + C

(where we substituted u = x2 + 4, so du = 2 dx and dx =
1

2
du)

= ln(x)− 1

2
ln
(
x2 + 4

)
+ C = ln(x)− ln

(√
x2 + 4

)
+ C

= ln

(
x√

x2 + 4

)
+ C �
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Quiz #16. Monday, 27 February, 2012. [12 minutes]

1. Find the arc-length of y = 2
3x

3/2 for 0 ≤ x ≤ 3. [5]

Solution.
dy

dx
=

d

dx

(
2

3
x3/2

)
=

2

3
· 3

2
x1/2 = x1/2 =

√
x, so

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(√
x
)2
dx =

√
1 + x dx .

The arc-length of the curve is therefore given by∫ 3

0

ds =

∫ 3

0

√
1 + x dx Substitute u = 1 + x, so du = dx and

x 0 3
u 1 4

.

=

∫ 4

1

√
u du =

∫ 4

1

u1/2 du =
2

3
u3/2

∣∣∣∣4
1

=
2

3

(
43/2 − 13/2

)
=

2

3

((
41/2

)3
− 1

)
=

2

3

(
23 − 1

)
=

2

3
(8− 1) =

2

3
· 7 =

14

3
. �

Quiz #17. Monday, 5 March, 2012. [10 minutes]

1. Compute lim
n→∞

arctan(n)

n2
. [5]

Solution. Note that both arctan(x) and x2 are defined and continuous on [1,∞), so

lim
n→∞

arctan(n)

n2
= lim
x→∞

arctan(x)

x2
→ π/2
→∞ = 0

since arctan(x) has a horizontal asymptote of y = π/2 as x→∞. �

Quiz #18. Monday, 12 March, 2012. [10 minutes]

1. Determine whether the series

∞∑
n=1

n+ 1

n2 + 2n− 1
converges or not. [5]

Solution 1. (Using the (Basic) Comparison Test.) We will compare the given series to

the harmonic series
∞∑
n=1

1

n
. Since

n+ 1

n2 + 2n− 1
=

n+ 1

n2 + 2n+ 1− 2
=

n+ 1

(n+ 1)2 − 2
>

n+ 1

(n+ 1)2
=

1

n+ 1
> 0

for all n ≥ 1, the given series diverges by comparison with the series

∞∑
n=1

1

n+ 1
=

∞∑
n=2

1

n
.

This last is the harmonic series (less its first term), and so is known to diverge. (One could
also use the p-Test to verify the harmonic series diverges.) �
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Solution 2. (Using the Limit Comparison Test.) Again, we will compare the given series

to the harmonic series
∞∑
n=1

1

n
. Since

lim
n→∞

n+1
n2+2n−1

1
n

= lim
n→∞

n+ 1

n2 + 2n− 1
· n

1
= lim
n→∞

n2 + n

n2 + 2n− 1
= lim
n→∞

n2 + n

n2 + 2n− 1
·

1
n2

1
n2

= lim
n→∞

n2

n2 + n
n2

n2

n2 + 2n
n2 − 1

n2

= lim
n→∞

1 + 1
n

1 + 2
n −

1
n2

=
1 + 0 + 0

1 + 0− 0
= 1 ,

and 0 < 1 < ∞, the Limit Comparison Tells us that the given series and the harmonic

series
∞∑
n=1

1

n
either both converge or both diverge. Since the harmonic series is known to

diverge, this means that
∞∑
n=1

n+ 1

n2 + 2n− 1
must diverge as well. (Again, one could also use

the p-Test to verify the harmonic series diverges.) �

Solution 3. (Using the Integral Test.) Observe that an =
n+ 1

n2 + 2n− 1
= f(n) for the

rational function f(x) =
x+ 1

x2 + 2x− 1
, which is obviously defined, positive, and continuous

on [1,∞). [We leave it to you to check that it is also decreasing on [1,∞) – try computing
its derivative!] Since the improper integral

∫ ∞
1

x+ 1

x2 + 2x− 1
dx = lim

t→∞

∫ t

1

x+ 1

x2 + 2x− 1
= lim
t→∞

∫ t2+2t−1

2

1

u
· 1

2
du

Using the substitution u = x2 + 2x− 1, so

du = (2x+ 2) dx = 2(x+ 1) dx, with

(x+ 1) dx =
1

2
du, and

x 1 t
u 2 t2 + 2t− 1

.

= lim
t→∞

1

2

∫ t2+2t−1

2

1

u
du = lim

t→∞

1

2
ln(u)

∣∣∣∣t2+2t−1

2

= lim
t→∞

[
ln
(
t2 + 2t− 1

)
− ln(2)

]
=∞ ,

(t2 + 2t− 1→∞ as t→∞, and so

ln
(
t2 + 2t− 1

)
→∞ as well.)

diverges, it follows by the Integral Test that the series
∞∑
n=1

n+ 1

n2 + 2n− 1
diverges as well. �
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