TRENT UNIVERSITY

MATH 1101Y Test 2

11 February, 2011

Time: 50 minutes

Name: Steffi Graph O dos. LAt 206 Lavre a

STUDENT NUMBER: 01234567 L T LR L e

CL? Hece ace antly LZaee gruedtions!

Total sl

Instructions

Show all your work. Legibly, please!

If you have a question, ask it!

Use the back sides of the test sheets for rough work or extra space.
You may use a calculator and an aid sheet.
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1. Compute any four (4) of the integrals in parts a-f. [16 = 4 x 4 each]

1 /4 00
a. ——dzx b. / sec(z) tan(z) dz c. / e Ydx
| == [ seca) an(a) 0

1 (&
d. / — dx e. / cos(@) 1o f. / In(z) dz
22+ 3z +2 sin(x) 1

SOLUTIONS. a. We'll use the trig substitution z = tan(f), so dr = sec?(f)df and
Va2 +1 = /tan?(0) + 1 = \/sec2(d) = sec(d).

1 1

= dr =
/\/.TQ—i—l ! /sec(@)
zln(:c+ :z;2+1)+c 0

sec?(0) df = /sec(e) df = In (tan(f) + sec(d)) + C

b. We'll use the substitution u = sec(z), so du = sec(z) tan(x) dx and i (1) 7://51 (Note
that sec(m/4) = 1/ cos(m/4) = 1/ (1/v2) = V2.)
/4 V2
/ sec(x) tan(z) dz = / ldu= u\l/i =v2-1 O
0 1
c. We'll use the substitution w = —z, so dw = (—1)dx and dz = (—1)dw, and Zj} g _tt.

Note that this is an improper integral, so we’ll have to take a limit first.

o] t —t
/ e Pdxr = lim | e ®dxr= lim eV (—1)dw = lim (—l)ew|gt
0

t—o00 0 t—o00 0 t—o00

= lim [(—1)e”" = (=1)e’] = lim [—e "+ 1] = lim [1 — l} =1-0=1

t—o0 t— o0 t— o0 et

1
Notethat—t—>0ast—>oosinceet—>ooast—>oo. |
e

d. This is a job for partial fractions. Note first that 22 + 3z + 2 = (z + 1)(x + 2). (This
can be done by eyeballing, experimenting a bit, or using the quadratic formula to find the
roots of 22 4+ 3z + 2. Calculators that can do some symbolic computation should be able
to factor the quadratic too.) We must therefore have a partial fraction decomposition of

the form
1 1 A B

x2+3x—|—2:(:p—|—1)(x—|—2) x—|—1+x—|—2

for some constants A and B. It follows that

1 A B  Alz+2)+B(x+1) (A+B)z+(2A+ B)

CrD@+2) 24l 212 @+D@E+2 | @+D@<+2)
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so A+ B=0and 2A+ B =1. Then A = 2A+B)—(A+B) =1-0=1 and
B=0-A=-1.

We can now integrate at last; we’ll use the substitutions v =z + 1 and w = = + 2, so
du = dx and dw = dz.

1 1 —1 1 1
/—dx:/ + dx:/ da:—/ dx
22 4+ 3x 42 r+1 z+2 z+1 x+ 2

/ du—/—dw—ln —In(w) +C

=ln(z+1)—In(z+2)+C O

e. We'll use the substitution u = sin(z), so du = cos(z) dz.

/ c.os(a:) dx = / % du =In(u) + C = In(sin(x)) + C O

sin(z)

1
f. We'll use integration by parts, with u = In(z) and v =1, so v’ = = and v = z.
x

(& e e (& 1
/ In(z)dx = / w' dz = wv] —/ vw'vdr = zln(z)[] —/ —zdx
1 1 1 1T

:(eln(e)—lln(l))—/leldx:(6-1—1-0)—a:|i:e—(e—1)=1 O

2. Do any two (2) of parts a-e. [12 = 2 x 6 each]

2,3 _ .2 1
a. Compute / ror ot dx
1 rz+1

b. Find the area between y = cos(x) and y = sin(z) for 0 <z <

ro |

41
c. Which of / arctan (\/E) dx and / arctan (502) dx is larger? Explain why.

™ ™

41

2
d. Use the Right-hand Rule to compute / rdz.
1

e. Find the area of the region bounded by y =0 and y = In(z) for 0 < z < 1.

SOLUTIONS. a. This is a rational function whose numerator has degree greater than its
denominator. Observe that

333—a:2—:1;+1_ (x3—:ic)+(—:l;2—l—1) _x(xQ—l) l(x —1)

x+1 - x+1 - r+1
_ (z—1) (22 - 1) _ (x—1)(z—1)(z+1) P
x+1 r+1 ’



which we could also get by dividing = + 1 into 23 — 22 — x + 1 if we didn’t spot the cheap
bit of algebra above.
We can now integrate; we’ll use the substitution w = = — 1, so dw = dx, and we’ll

. . z 1 2
change limits accordingly: w 0 1° Thus:
2 .3 2 2 1 31
—a—ztl 1 0 1
/x a; vt d:l::/(x—l)Qd:C:/wzdw:w— =___ ="z ]
1 x+1 1 0 3 0 3 3 3

b. Recall what the graphs of cos(x) and sin(x) look like:

plot( [cos(x), sin(x)], x=0..(1/2)*Pi );

cos(0) = 1 and sin(0) = 0, but cos (3) = 0 and sin (%) = 1; the graphs of the two functions

where both are equal to 1/ V/2. The area between the curves is

™

cross each other at x = 7,

therefore:
/4 /2

Area = /0 (cos(x) — sin(x)) dx + /7T/4 (sin(z) — cos(x)) dx

= (sin(z) — (—cos(x)))lp"" + (= cos(x) —sin(z))| 7}

_ (sin (g) + cos (g)) — (sin (0) + cos (0))
(o) (5)~(on() ()

:<%+%>—(0+1)+(—0—1)_ _i__>

:%_2:2f—2:2<\/§—1) 0

c. Note that the two definite integrals are the same except for the function of x being

composed with arctan. As arctan(t) is an increasing function — its derivative, T2 is

positive for all ¢ — and /z < 2? for all z > 1, we must have arctan (y/z) < arctan (2?) for
41 41

all z in [m,41]. It follows that / arctan (v/z) do < / arctan (z*) dz. O
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b n

b— b—
d. We throw the Right-hand Rule formula, / f(z)dr = lim E a - f (a +1 a)’
a e n

at the given definite integral and compute away. Note that f (a:)_: x in this case.

n

/2 d 1j 22_1 1+'2_1 li il 1+i li 1§n: 1+i
xr ar = 11m . 7 = 1m — — = 1im — —
1 n— oo i—1 n n n—oo i1 n n n—oo M 1 n

o1 - " o1 1 .
“am ([ < 5 5]) = (o 1))
) 1 1 n(n+1) . 1 n-+1 . 1/3 1
=lim - [(n+—-———2 ) = lim — (n+ = lim — [ =n+ =
n—oo N n 2 2 n—oo 1 \ 2 2

3 1
= lim ( -+ — :§—|—0 since — — 0 as n — oco. [J
2 2n
e. Since In(z) < 0 for 0 < x < 1, the area of the given region is just fol (0 —1In(z)) de =

- fol In(z) dz. However, since In(x) has an asymptote at = = 0, this is an improper integral,
forcing us to do some additional work. To find the antiderivative of In(x) itself, we will
use integration by parts, with u = In(z) and v = 1, so v’ = % and v = x.

1 1 1
Area = —/ In(z)dxr = lim (—/ In(z) dm) = — lim In(z) dx
0 t

t—0+ t—0t t
14 1

= — lim {xln(m)ﬁ —/ —xd:z:} = — lim {Hn(l) — tIn(t) —/ ldw}

t—0+ t i t—0t t
— — | . — — 1 — — | — — —
= — lim [1 0 — #ln(t) xH lim [—tn(t) = (1 —1)]
= lim [tIn(¢t) + (1 —¢)] = lim n(t) + lim (1 —1¢)
ot ot 1/t o+

1
Use 'Hopital’s Rule since In(¢) — —oo and 7 oo es t—07:

1/t
= li _ 1—-0)= li —t 1=—0+1=1 ]
(t;%a _1/t2)+< ) (t;%a )+ +



3. Do one (1) of parts a or b. [12]

a. Sketch the solid obtained by rotating the region bounded above by y = 22 and
below by y = 0, where 0 < z < 2, about the y-axis, and find its volume.

b. Sketch the solid obtained by rotating the region bounded above by y = z? and
below by y = 0, where 0 < x < 2, about the x-axis, and find its volume.

SOLUTIONS. Note that the region being rotated is the same in both a and b; they differ
in the axis about which the region is rotated.

0.8 /

/

T T T 1
04 0.6 0.8 1

plot(x~2,x=0..1,color="Red",filled=[color="Red",transparency=.5])

SOLUTION TO a. Here is a crude sketch of the solid with a generic cylindrical shell.

\j

The solid with a cylindrical shell.

We will find the volume of the solid using cylindrical shells. Note that since we
rotated the region about the y-axis, we will have to integrate with respect to z if we’re
using shells. Looking at the diagram, it is easy to see that the radius of the cylindrical
shell that comes from rotating the vertical cross-section at x of the original region is just
going to be r = x — 0 = z. It is also easy to see that its height, which is the length of the
vertical cross-section at x of the original region, is going to be h = 22 — 0 = 22. The limits
of integration will come from the possible x values in the original region, 7.e. 0 < x < 2.
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Thus the volume of the solid is:

2 2 2
Volume:/ 27Trhdx:/ i dx:27r/ 23 dx
0 0 0
412 4 4
x 2 0 16
1 . 7T<4 4) 7r(4 O) 8

= 2m—

SOLUTION TO b. Here is a crude sketch of the solid with a generic disk.

The solid with a disk.

Rotate picture 90° clockwise!

We will find the volume of the solid using disks. Note that since we rotated the region
about the z-axis, we will have to integrate with respect to = if we’re using disks. Looking
at the diagram, it is easy to see that the radius of the disk that comes from rotating the
vertical cross-section at x of the original region is just going to be the length of that vertical
cross-section, namely r = 2 — 0 = 22. Note that the disk has no hole because the z-axis
forms part of the boundary of the give region, so we needn’t worry about the inner radius:
it is always 0. The limits of integration will come from the possible x values in the original
region, i.e. 0 < x < 2.

Thus the volume of the solid is:

2 2 2
Volume = / mr?dr = 7T/ (332)2 dx = 7T/ zt dx
0 0 0

52 5 5

2

_ o (232 4
5 | 5 5) 5

[Total = 40]



