Math 1100 — Calculus, Quiz #5B — 2009-11-05

Differentiate the following functions:

(30) 1.
$$h(x) = \sqrt[5]{x} \cdot \cos(x)$$
.

Solution: $h(x) = f(x) \cdot g(x)$ where $f(x) = \sqrt[5]{x}$ and $g(x) = \cos(x)$. We have $f'(x) = \frac{1}{5x^{4/5}}$ and $g'(x) = -\sin(x)$. Thus, the Leibniz product rule says:

$$h'(x) = f'(x)g(x) + f(x)g'(x) = \frac{\cos(x)}{5x^{4/5}} - \sqrt[5]{x}\sin(x).$$

(35)
$$2. \ h(x) = \frac{1 - \cos(x)}{x + \sin(x)}.$$

Solution: $h(x) = \frac{f(x)}{g(x)}$, where $f(x) = 1 - \cos(x)$ and $g(x) = x + \sin(x)$. We have $f'(x) = \sin(x)$ and $g'(x) = 1 + \cos(x)$. Thus, the Quotient Rule says

$$h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} = \frac{\sin(x) \cdot (x + \sin(x)) - (1 - \cos(x)) \cdot (1 + \cos(x))}{(x + \sin(x))^2}$$

$$= \frac{x \sin(x) + \sin(x)^2 - 1 + \cos(x)^2}{(x + \sin(x))^2}$$

$$= \frac{x \sin(x) + 1 - 1}{(x + \sin(x))^2} = \frac{x \sin(x)}{(x + \sin(x))^2}.$$

here, (*) is because $\sin(x)^2 + \cos(x)^2 = 1$ by Pythagoras.

(35) 3.
$$h(x) = \sqrt[3]{1 + \exp(x^3)}$$
.

Solution: $h(x) = f \circ g(x)$ where $f(y) = \sqrt[3]{y}$ and $g(x) = 1 + \exp(x^3)$. We have $f'(y) = \frac{1}{3y^{2/3}}$ and $g'(x) = \exp(x^3) \cdot 3x^2$ (by the Chain rule). Thus, a second application of the Chain rule yields

$$h'(x) = f'(g(x)) \cdot g'(x) = \frac{\exp(x^2) \cdot 3x^2}{3(1 + \exp(x^3))^{2/3}}.$$