Math 1100 — Calculus, Quiz #18A — 2010-04-05

Are the following series absolutely convergent, conditionally convergent, or divergent? Jus-
tify your answer in each case.
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Solution: This series is The Integral Test says that the series converges if and only if the
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Thus, the integral is divergent, and thus, so is the series. Here (k) is the change of variables
= In(z) so that du =1 dz. 0
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Solution: This series is ’absolutely convergent ‘ To see this, we use the Ratio Test. Let a, :=
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Thus, lim [ 11] = lim w = 0 < 1.
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Thus, the Ratio Test says the series is absolutely convergent. O
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Solution: This series is ’absolutely convergent ‘ To see this, observe that |sin(n°)| <1 for all n € N.
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Thus, 812:572) < Sa But the series Z 373 converges (it is a p-series with p = 3/2 > 1).
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Solution: This series is ’conditionally convergent‘ but not absolutely convergent. To see this, first
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observe that the sequence {25} is decreasing (because the function f(z) = V22 +5 is
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increasing). Also,
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Thus, the Alternating Series Test says that the series converges. However, the series does not con-
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verge absolutely. To see this, we use the Limit Comparison Test to compare the series Z
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to the divergent series E —. We have
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Thus, as E — diverges, we conclude that E also diverges. O
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