
Mathematics 110 – Calculus of one variable
Trent University, 2003-2004

§A Test #2 Solutions

1. Compute any three of the integrals in parts a-f. [12 = 3 × 4 each]

a.
∫ π/2

0

cos3(x)dx b.
∫

1
x2 + 3x+ 2

dx c.
∫ ∞

2

1√
x
dx

d.
∫

arctan(x)
x2 + 1

dx e.
∫

ln
(
x2
)
dx f.

∫ 2

1

1
x2 − 2x+ 2

dx

Solutions.
a. Trig identity followed by a substitution:∫ π/2

0

cos3(x)dx =
∫ π/2

0

cos2(x) cos(x)dx =
∫ π/2

0

(
1− sin2(x)

)
cos(x)dx

Letting u = sin(x), we get du = cos(x)dx; note that
u = 0 when x = 0 and u = 1 when x = π/2.

=
∫ 1

0

(
1− u2

)
du =

(
u− 1

3
u3

)∣∣∣∣1
0

=
(

1− 1
3
13

)
−
(

0− 1
3
03

)
=

2
3
�

b. Partial fractions:∫
1

x2 + 3x+ 2
dx =

∫
1

(x+ 1)(x + 2)
dx =

∫ (
A

x+ 1
+

B

x+ 2

)
dx

We need to determine A and B:

1
(x+ 1)(x+ 2)

=
A

x+ 1
+

B

x+ 2
=
A(x+ 2) +B(x + 1)

(x+ 1)(x+ 2)
=

(A +B)x+ (2A+B)
(x+ 1)(x+ 2)

Comparing coefficients in the numerators, it follows that A + B = 0 and 2A + B = 1.
Subtracting the first equation from the second gives A = (2A+B)− (A+B) = 1− 0 = 1;
substituting this back into the first equation gives 1 + B = 0, so B = −1. We can now
return to our integral:∫

1
x2 + 3x+ 2

dx =
∫

1
(x+ 1)(x+ 2)

dx =
∫ (

1
x+ 1

+
−1
x+ 2

)
dx

=
∫

1
x+ 1

dx−
∫

1
x+ 2

dx = ln(x+ 1)− ln(x+ 2) + C

= ln
(
x+ 1
x+ 2

)
+ C �
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c. Improper integral:∫ ∞
2

1√
x
dx = lim

t→∞

∫ t

2

1√
x
dx = lim

t→∞

∫ t

2

x1/2 dx

= lim
t→∞

x3/2

3/2

∣∣∣∣t
2

= lim
t→∞

(
2
3
t3/2 − 2

3
23/2

)
=∞

. . . because t3/2 > t and t→∞. Hence this improper integral does not converge. �
d. Substitution:∫

arctan(x)
x2 + 1

dx =
∫
u du where u = arctan(x) and du =

1
x2 + 1

dx

=
1
2
u2 +C =

1
2

arctan2(x) + C �

e. Integration by parts:∫
ln
(
x2
)
dx =

∫
2ln(x)dx Let u = ln(x) and v′ = 2, so u′ =

1
x

and v = 2x.

= ln(x) · 2x−
∫

1
x
· 2xdx = 2xln(x)−

∫
2 dx = 2xln(x)− 2x+ C �

f. Completing the square and substitution:∫ 2

1

1
x2 − 2x+ 2

dx =
∫ 2

1

1
(x2 − 2x+ 1) + 1

dx =
∫ 2

1

1
(x− 1)2 + 1

dx

Let u = x− 1, then du = dx; note that u = 0 when x = 1
and u = 1 when x = 2.

=
∫ 1

0

1
u2 + 1

du = arctan(u)|10

= arctan(1)− arctan(0) =
π

4
− 0 =

π

4

Note that arctan(1) = π
4 and arctan(0) = 0 because tan

(
π
4

)
= 1 and tan(0) = 0. �

2. Do any two of parts a-d. [8 = 2 × 4 each]

a. Find a definite integral computed by the Right-hand Rule sum

lim
n→∞

n∑
i=0

(
1 +

i2

n2

)
· 1
n

.

[The sum should have been
n∑
i=1

· · · instead of
n∑
i=0

· · · . Darn typo!]
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Solution. The general Right-hand Rule formula is:∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f

(
a+ i

b − a
n

)
· b − a

n

Comparing the general sum above to the given one reveals that f
(
a+ b−a

n

)
= 1 + i2

n2 and
b−a
n = 1

n . It follows from the latter that b − a = 1. If we arbitrarily choose a = 0, it will
follow that b = 1 and f

(
a+ i b−an

)
= f

(
0 + i

n

)
= f

(
i
n

)
. It follows that f

(
i
n

)
= 1 + i2

n2 =
1 +

(
i
n

)2, that is, f(x) = 1 + x2.
Plugging all this into the integral side of the Right-hand Rule formula, we see that:

lim
n→∞

n∑
i=1

(
1 +

i2

n2

)
· 1
n

=
∫ 1

0

(
1 + x2

)
dx

It is worth noting that we could have chosen a to be any real number. This would, of
course, result in a different value of b (since b − a = 1) and a different function f(x). �

b. Compute
d

dx

(∫ tan(x)

0

e
√
t dt

)
.

Solution. This is a job for the Fundamental Theorem of Calculus and the Chain Rule:

d

dx

(∫ tan(x)

0

e
√
t dt

)
=

d

dx

(∫ u

0

e
√
t dt

)
where u = tan(x)

=
d

du

(∫ u

0

e
√
t dt

)
· du
dx

by the Chain Rule

= e
√
u · du

dx
by the Fundamental Theorem

= e
√

tan(x) · d
dx

tan(x)

= e
√

tan(x) · sec2(x)

If you can simplify this one significantly, you’re doing better than I! �
c. Find the area under the parametric curve given by x = 1 + t2 and y = t(1 − t) for

0 ≤ t ≤ 1.

Solution. Note that dx = 2t dt and that y = t(1 − t) ≥ 0 for 0 ≤ t ≤ 1.

Area =
∫ t=1

t=0

y dx =
∫ 1

0

t(1− t)2t dt = 2
∫ t

0

(
t2 − t3

)
dt

= 2
(

1
3
t3 − 1

4
t4
)∣∣∣∣1

0

= 2
(

1
3
13 − 1

4
14

)
− 2

(
1
3
03 − 1

4
04

)
= 2

1
12

=
1
6
�
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d. Sketch the region whose area is computed by the integral
∫ 1

0

arctan(x)dx.

Solution. Note that arctan(x) ≥ 0 for x ≥ 0, arctan(0) = 0, and arctan(1) =
π

4
.

One does need to know what the graph of arctan(x) looks like; the one above was
generated using the Maple command plot(arctan(x),x=-5..5); (with some additions
made in a drawing program). �

3. Find the volume of the solid obtained by rotating the region bounded by y =
1
x

,

y =
1
2
, and x = 1 about the line x = −1. [10]

Solution. Here’s a crude sketch of the solid in question:

Note the region that was rotated includes x values from 1 to 2.

4



We will tackle this problem using shells rather than washers, not that there is much
difference in difficulty between the two methods. Since the axis of revolution is a vertical
line, the shells are upright and we will need to integrate with respect to the horizontal
coordinate axis, namely x. Here is a sketch of the cylindrical shell at x:

It is not hard to see that this shell has radius r = x− (−1) = x+1 and height h =
1
x
− 1

2
,

and hence area 2πrh = 2π(x+ 1)
(

1
x
− 1

2

)
.

Thus

Volume =
∫ 2

1

2πrh dx =
∫ 2

1

2π(x+ 1)
(

1
x
− 1

2

)
dx = 2π

∫ 2

1

(
1− x

2
+

1
x
− 1

2

)
dx

= 2π
∫ 2

1

(
1
2
− x

2
+

1
x

)
dx = 2π

(
x

2
− x2

4
+ ln(x)

)∣∣∣∣2
1

= 2π
(

2
2
− 22

4
+ ln(2)

)
− 2π

(
1
2
− 12

4
+ ln(1)

)
= 2π

(
ln(2)− 1

4

)
�

4. Find the area of the surface obtained by rotating the curve y = ln(x), 0 < x ≤ 1,
about the y-axis. [10]

Solution. Here’s a crude sketch of the surface:
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A slightly nasty feature of this problem is that one must use an improper integral to
compute the surface area because ln(x) has an asymptote at x = 0. (Even nastier is the
fact that if one does not notice that this requires an improper integral and proceeds blindly
using x as the independent variable, one is likely to get the right answer but still lose some
marks . . . ) It should not be too hard to see that the radius of the surface corresponding

to the point (x, y) on the curve is just r = x− 0 = x. Note that
dy

dx
=

d

dx
ln(x) =

1
x

.

A =
∫ 1

0

2πr

√
1 +

(
dy

dx

)2

dx = 2π
∫ 1

0

x

√
1 +

(
1
x

)2

dx = 2π
∫ 1

0

x

√
1 +

1
x2

dx

Note that this last is an improper integral.

= lim
t→0+

2π
∫ 1

t

x

√
1 +

1
x2

dx = lim
t→0+

2π
∫ 1

t

√
x2

(
1 +

1
x2

)
dx = lim

t→0+
2π
∫ 1

t

√
x2 + 1 dx

This is a job for a trig substitution, namely x = tan(θ). Then dx = sec2(θ)dθ;
we’ll keep the old limits and substitute back eventually.

= lim
t→0+

2π
∫ x=1

x=t

√
tan2(θ) + 1 · sec2(θ)dθ = lim

t→0+
2π
∫ x=1

x=t

√
sec2(θ) · sec2(θ)dθ

= lim
t→0+

2π
∫ x=1

x=t

sec(θ) · sec2(θ)dθ = lim
t→0+

2π
∫ x=1

x=t

sec3(θ)dθ

This is an integral we’ve seen several times over, so we’ll just cut to the chase:

= lim
t→0+

2π · 1
2

(tan(θ) sec(θ) + ln |tan(θ) + sec(θ)|)|x=1
x=t

= lim
t→0+

π
(
x
√
x2 + 1 + ln

∣∣∣x+
√
x2 + 1

∣∣∣)∣∣∣1
t

= lim
t→0+

[
π
(
1
√

12 + 1 + ln
∣∣∣1 +

√
12 + 1

∣∣∣)− π (t√t2 + 1 + ln
∣∣∣t+

√
t2 + 1

∣∣∣)]
= lim
t→0+

[
π
(√

2 + ln
(
1 +
√

2
))
− π

(
t
√
t2 + 1 + ln

∣∣∣t+
√
t2 + 1

∣∣∣)]
= π

(√
2 + ln

(
1 +
√

2
))

. . . because t
√
t2 + 1 → 0 as t → 0 and t+

√
t2 + 1 → 1, so ln

∣∣t+
√
t2 + 1

∣∣ → ln(1) = 0
as t→ 0. �
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