Mathematics 110 — Calculus of one variable
Trent University 2003-2004

SOLUTIONS TO ASSIGNMENT #4

Consider the curve given by the following parametric equations.

x = €' cos(t)
y = e’ sin(t)
where —oco<t<0

(See §10.1 and 10.2 in the text for information on how to handle curves in parametric
form.)

1. Sketch this curve.  [2]

SOLUTION. Here are graphs of the curve on the four intervals [—2m,0], [—4m, —27],
[—67, —47], and [—87, —67], respectively. Note the changes in scale in the graphs ...
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The curve is actually a spiral, but it’s a little hard to tell that when graphing it, since
it approaches approaches the origin so quickly. This happens because ¢! — 0 very quickly
as t — —oo0.

The graphs were generated in Maple using the commands

plot( [exp(t)*cos(t), exp(t)*sin(t), t=-2%Pi..0] );

plot( [exp(t)*cos(t), exp(t)*sin(t), t=-4%Pi..-2xPi] );
plot( [exp(t)*cos(t), exp(t)*sin(t), t=-6*Pi..-4xPi] );
plot( [exp(t)*cos(t), exp(t)*sin(t), t=-8*Pi..-6x%Pi] );

respectively. ll
2. Find the length of this curve.  [4/

SOLUTION. We throw the parametric version of the arc-length formula at this curve. First,
note that

¢ d i ¢ (4
prialen (' cos(t)) = (ae ) -cos(t) + e - (% cos(t))
= e’ cos(t) + e’ (—sin(t)) = e’ (cos(t) — sin(t))
and
d,, . d\ . . (d
gl (e'sin(t)) = (%e ) -sin(t) + e (% sm(t))
= e'sin(t) + e’ (cos(t)) = e’ (sin(t) + cos(t)) .

Now we plug in and go:

L= L) ()

_ / V(e (cos(t) — sin(£)))? + (et (sin(t) + cos()))? dt

°8

\/th (cos(t) — sin(t))? + e2t (sin(t) + cos(t))> dt

\/th 2 cos?(t) + 2sin®(t)) dt = /0 \/2€2t (cos2(t) + sin(t)) dt

0

V2e2t (1) dt = / Vove2t dt = \f/ etdt =2 lim et dt

——
u OO’LL

/

= / \/th cos?(t) — 2 cos(t) sin(t) + sin®(t) + sin®(¢) + 2sin(t) cos(t) + cos?(t)) dt
/
/

=2 lim e} =v2 lim (e —e")=v2 lim (1—¢")=v2(1-0)

U——00 U——00 U——00

because e* — 0 as © — —00
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3. Suppose the curve is rotated about the z-axis. What is the area of the resulting
surface?  [4]

SOLUTION. The formula for the area of the surface obtained by rotating a curve about a
line is f ¢ 2mrds. We know what the limits and ds are for this curve from problem 2, but
we need to figure out what r is. Since we are rotating the curve about the x-axis, r will
be the distance from a point on the curve to the x-axis. The problem is that the curve is
sometimes above the z-axis and sometimes below it as it spirals around the origin, so we
can’t just use r = y — 0 = y. Instead, we have to use r = |y — 0] = |y|:

0 2 2
dx dy
2nrds = / 27|y \/(—) + (—) dt
/c o d dt dt
0

= / 27 |’ sin(t)| V2et dt

0
e’ |sin(t)] e’ dt since e’ > 0 for all ¢

:2\/§7T/OO
_ 9V3n / " sin(0)] di

oo

Our problem now is that we have to break the integral up into pieces according to
where sin(t) is positive or negative: when sin(t) > 0, we have |sin(t)| = sin(¢), and when
sin(t) < 0, we have |sin(t)| = —sin(t). sin(¢) is negative on [—, 0], positive on [—27, —m],
negative on [—3m, —27|, positive on [—47, —37], and so on. It follows that:

0
/ 2rrds = 2\/57?/ e [sin(t)| dt
c

— 00

= 22 l / D (—sin(t)) dt + / e gin(t) dt

- —27

—2m -3
+ / et (—sin(t)) dt + / et sin(t) dt
—4m
—57

+/7r e (—sin(t)) dt+/67r e*! sin(t) dt+~~~]

= 2V2n l—/ et sin(t) dt + / et sin(t) dt

—27

—2m -3
- / e sin(t) dt + / e sin(t) dt

—4m

—4m —57
—/ e sin(t) dt + / e sin(t) dt — - - }

—57 —67

For convenience, we’ll work out the antiderivative of e sin(t) just once and then plug
it into the above. As our first step, we’ll use integration by parts, with u = 2! and
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v' = sin(t), so v’ = 2%

and v = — cos(t).

/th sin(t) dt = e*' (— cos(t

= —¢? cos +2/€2t

Here we’ll do parts again, this time with u

v = sin(t).
Thus
SO

/2€2t —cos(t)) dt

th

COS

and v’ = cos(t), so v = 2e

= —e? cos(t) + 2 le% sin(t) — / 22" sin(t) dt]

= —e* cos(t) + 2e* sin(t) — 4 / et sin(t) dt

/th sin(t) dt = —e*" cos(t) + 2 sin(t) — 4/€2t sin(t) dt ,

5 / e sin(t) dt = —e?' cos

from which it follows that

/ e sin(t) dt

1
——e* cos
)

(t) + 2e*! sin(t),

2

(t) + ge% sin(t) .

2t

and

We ignore the generic constant because we’ll be plugging this antiderivative into definite
integrals where the constant would cancel out anyway.
Back to the definite integrals we want to compute:

= 2V/2r l— /07r et

4

sin(t) dt + / e sin(t) dt
—2m
—27 -3
- / e sin(t) dt + / e sin(t) dt
-3 —4
—4 —57
—/ et sin(t) dt + / e sin(t) dt — - - }
—57 —67
1 2 ’ 1 2 o
[— (_gth cos(t) + gth sin(t)) + (_gth cos(t) + gth sin(t))
- —27
—27 -3
1 2 1 2
— (_56275 cos(t) + ge% sin(t)) + (_56275 cos(t) + ge% sin(t))
-3 —4
—4 —57
1 2 1 2
— (——th cos(t) + —e* sin(t)) + (——th cos(t) + —e* sin(t))
) S —57 ) o —67

_]



This isn’t quite as bad as it looks because sin(¢) = 0 whenever any integer multiple of 7 is
plugged in for ¢. This means that half of the preceding mess can be ignored:

1 0 1 o
=221 |- (——th cos(t)) + (——th cos(t))
5 - 5 —27
1 —2m 1 -3
- (_56275 cos(t)) + (_56275 cos(t))
-3 —4m

—4m 1
+ (— gth cos(t)+)

- (—%egt cos(t)) .
2V/2m 2t
5|

e cos(t)}(i7r — % cos(t)[;r7r

—57
—67

+ €2t cos(t)[iz — % cos(t)[i:

+ e** cos(t)| o

2 —5m
5. — € tcos(t)—FL67r +}

==V [(eo cos(0) — e 2" cos(—m)) — (67271- cos(—m) — e 47 cos(—2m))

9
+ (e7* cos(—2m) — e~ cos(—3m)) — (77 cos(—3m) — e~ cos(—4n))
+ (7% cos(—4m) — e 197 cos(—5m)) — (7' cos(—5m) — e 1?7 cos(—6m))
4+ ... ]
Since €% = 1 and cos(0) = 1, cos(—m) = —1, cos(—27) = 1, cos(—3n) = —1, and so on,

this comes down to:

_ Q\fW [(1 _}_67271') . (_67271' _67471')
i (67471' 4 67671') _ (_efem o efsw)
+ (67871' + 671071') _ (_671071' _ 671271')
_——
2/ 27

— 2 [(1 _}_67271' _}_67271' _}_67471')
+ (67471' + 67671' + 67671' + 67871')
+ (67871' + 671071' 4 671071' 4 671271')
+ .. ]

2,/2
_ fﬂ (1426727 4 26747 + 267 4 2757 4 2¢7107 4 2¢ 712 4]

Here we can approximate the answer pretty well by taking the first few terms of the infinite
sum — because e 2" — 0 very quickly as n — oo — or we can continue by adding up the
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infinite sum:

2/2
_ fﬂ [1+ 26727 4 26747 + 26767 4 2757 4 2¢7107 4 2e 712 4]

_2\/57?
5

[—1 4242 4 2(e ) 4 2(e ) 42 () £ }

It is a fact (see Chapter 11 of the text) that the sum of the geometric series a + ar + ar? +
ar® 4 -+ is 7%=, so long as |r| < 1. In our case, 2 (6*27’)2 +2 (6*27’)3 +2 (67271-)4 + .- is

ro
a geometric series with first term @ = 2 and common ratio » = e72™ < 1. It follows that

the area of the surface is:

2/ 27

== 124272 42 (e 2) 2 (e 2) 42 (e 27) 4 - }
202r [ 2
_weml g, 2
5 | 1—e2m
S22 [ 1—e T L2
5 | 1—e2m  1—e 2w
C2V21 14e "
5 l—e2m
For those who are morbidly curious,
2v/2
\gﬁ (1] ~ 1777153175
2V/2
\gﬁ - [1+2¢727] ~ 1.783790638
2v/2
\gﬁ - [1+2e727 +2e7 7] ~ 1.783803034
2V21 14e 2"
Vam L+ eTT ) esg03058
5 1 —e 27
The first few terms of the series give pretty good approximations of the final answer ... l



