Math 110 —Assignment #6

Due: Monday, February 10

Justify your answers. Show all steps in your computations.

Please indicate your final answer by putting a around it.

Please write neatly and legibly. Illegible answers will not be graded.

Math 110A: When finished, please give your assignment to Stefan or leave it under his
door.

Math 110B: When finished, please place your assignment in slot marked MATH 110 in
the big white box outside the Math Department Office in Lady Eaton College.

Let f:]0,27]—R be a function. For n =1,2,3,..., we define the Fourier Coefficients:

2 2
A, = / f(z)-cos(nz) de, and B, = / f(z) - sin(nz) dz.
0 0
For example, if f(x) = sin®(z), and n = 7, then
2T 2T
A, = / sin®(z) - cos(7r) dv, and B; = / sin®(z) - sin(7x) da.
0 0

Physically speaking, if f(z) describes the vibration of a string, then A; and B; measure the
amount of energy vibrating at 7 cycles per second (ie. 7 Hz). Likewise, Ag and Bg measure the
amount of energy vibrating at 8 Hz, etc.

Suppose f(x) = sin®(z).

1. Compute f'(z) and f"(x).

Solution: f/(z) = 3sin?(x)cos(x) and f”(x) = 6sin(x) cos?(z) — 3sin3(z).

2. Show that |f'(x)| < 3 for all x € [0, 2], and |f'(z)| <9 for all z € [0, 27].

Solution: [sin(z)| < 1 and [cos(z)| < 1 for all . Thus, |f/(z)] = |[3sin®*(z)cos(z)| =
3lsin(z)| - [cos(z)] < 3-1-1=3.
Likewise, |f”(z)] = |6sin(z)cos?(z) — 3sin®(z)| <(a) [|6sin(z)cos®(z)|+|3sin®(z)| =
6 |sin(z)| - [cos(x)[* + 3|sin(z)]> < 6-1-124+3.13 = 9.

Here, (A) is the Triangle Inequality.



3. If A7 is the Fourier coefficient defined above, show that

-3 21
Ay = —

7 Jo

(Hint: Use integration by parts). Generalize this to show that, for any n =1,2,3, ..

A, = _

_ 2T
73/ sin(z)? cos(z)-sin(nz) dz, and B,
0

n

sin(z)? cos(z) - sin(7x) du.

*9

/0 " sin(x)? cos(x)-cos(nz) dx.

Solution: We apply integration by parts. Let f(z) = sin®(z), and suppose ¢/(z) = cos(nz). Thus,

f(x) = 3sin?(z) cos(z) and g(z) = L sin(nx), so that

2

A

n

2
/ sin®(z) - cos(nz) dz
0 0

=27 27
= f@eo@ [ = [ F@ ) o
= %sing(x)‘sin(nm) xizw — %

3

(sin3(27r) - sin(2n7) — sin®(0) - sin(O)) -

3

n

/ i sin(x)? cos(z) - sin(nz) dz.
0

®

f(z)-g'(z) dw

27
/ 3sin(z)? cos(z) - sin(nz) dz
0

2
/ sin(z)? cos(z) - sin(nz) da
0

To see equality (P), observe that sin®(27) = sin®(0) and sin(2n7) = sin(0); hence,

sin3(27) - sin(2n) = sin3(0) - sin(0).

Likewise, if ¢’(x) = sin(nz), then g(z) = =L cos(nz), so that

2
By,

2m
/ sin®(z) - sin(nz) dz
0

0

= 27
- f(z) g(z) x:z — ; f(x)-g(x) dx
1

_f_i
n

(sin3(27r) - cos(2nm) — sin®(0) - cos(O))

3

n

2
= / sin(z)? cos(z) - cos(nz) dz,
(P) 0

f(@) - g'(x) da

2m
/ 3sin(x)? cos(z) - cos(nx) da
0

2m
/ sin(z)? cos(z) - cos(nz) dz
0

where equality (P) is because sin®(27) - cos(2nm) = sin®(0) - cos(0).

4. Conclude that, for alln =1,2,3,.. .,

A, <



(For example, Agy < 7j.) Hence, there is ‘little energy’ in the ‘high frequency’ vibrations.

(Hint: Do not explicitly compute any integrals. Instead, combine #2 and #3, and use

the Comparison Properties of the Integral from §5.2 of the text).
-1 2m

Solution: From #3, we know that 4, = — f'(z) - sin(nz) dz. From #2, we know that
n-Jo
|f(x)] <3 forall x €[0,27]. Thus,
-1 27 1 27
A, = ‘ f(z) -sin(nz) de| = — f/(z) - sin(nz) dz
n n|Jo
1 2w 1 2m
<) n/ f'(z) 'sin(n:z)‘ dr = / ’f/(a:)’ - [sin(nx)| dz
0 nJo
2w
< 1/ 3-1dx = l671' = 61
n Jo n n

Here, inequality () is by Comparison Property #8 on page 387 of §5.2.

The argument for B,, is the same, only with cos(nz) instead of sin(nx).

5. Repeat the argument from #3 to show that for any n =1,2,3,.. .,
-3 2

A, = el <2 sin(z) cos®(x) — sin3(:c)) - cos(nz) du,
_3 o . 2 .. 3 .
and B, = ) <2 sin(z) cos®(x) — sin (:v)) -sin(nx) dz.

Solution: We apply integration by parts. Let h(z) = sin?(z) cos(x), and suppose ¢'(x) = sin(nz).
Thus, h'(z) = 2sin(z) cos?(z) — sin®(x) and g(z) = =L cos(nz), so that

2m
/ sin?(z) cos(z) - sin(nz) dz
0

=27

=0

27 27
= [ hw) @i = g - [ W) () de
0 0

=27 1

+ = /O27r (2 sin(z) cos?(z) — sin2(az)) -cos(nz) dx

=0 n

= %1 sin?(z) cos(z) - cos(nx)

= % (sin2(277) cos(2) - sin(2n7) — sin?(0) cos(0) - sin(O))

1 2m
+ / (2 sin(z) cos?(z) — sin2(az)) - cos(nx) dx
n Jo
1 2 ) ) 9
= n/o (2 sin(x) cos”(z) — sin (a;)) - cos(nx) dz.
where equality (P) is because sin?(27) cos(27) - sin(2n7) =  sin?(0) cos(0) - sin(0). Thus,
A ;3 2 ' 5 ) de — ;3 2m 0 9 3 J
"o n ) sin(x)* cos(z)-sin(nx) doe = pely ( sin(x) cos”(x) — sin (ac))cos(n:c) x.

The proof for B,, is similar.



6. Repeat the argument from #4 to conclude that, for alln =1,2,3, ...,

187 187
n n
(For example, Agy < 555.) Hence, there is wery little energy in the ‘high frequency’
) ) -1 2m
vibrations. Solution: From #5, we know that 4, = — f"(z) - cos(nz) dz. From #2,
n= Jo
we know that |f”(z)| <9 for all z € [0,27]. Thus,
-1 2m 1 27
|An| = wz ) f"(x) - cos(nzx) dz| = 3 1" (z) - cos(nz) dx
1 2m 1 2m
< 3 1" (x) ~cos(nx)‘ dr = — |f"(@)] - |cos(na)| da
n 0 n 0
I 1 18
< [ 9-1de = 8% = —
n? Jo n n

Here, inequality (%) is by Comparison Property #8 on page 387 of §5.2.

The argument for B,, is the same, only with sin(nz) instead of cos(nx).

7. A function f : [0,27]—R is called smoothly periodic if:

o f(2m) = f(0);

o f'(2m) = f(0);

o f'(2m) = f"(0);

o ... and, for all k,  f®(27) = f*®)(0), where f* is the kth derivative of f(z).

(For example, f(z) = sin®(x) is smoothly periodic. )

Generalize the previous argument: Show that, if f is any smoothly periodic function,
then for any £k =1,2,3,.. .,

1 [ +1 [
A, = —k/ f®(z) - Ci(nz) dz, and B, = _k/ f¥(x) - S(nw) da.
nc Jo nr Jo

Here, if k is even, then we define Cy(z) = cos(x) and Si(z) = sin(x); on the other hand,
if k& is odd, then we define Cy(x) = sin(z) and Sy(x) = cos(z).

(Hint: Proceed by induction on k)

Conclude that, for any £ = 1,2, 3, ... there is some constant ¢, such that

271'5;9
nk

27’(’61C
nk

|A,| and  |B,|

Give a physical interpretation of this result.

4



Solution: We prove the result by induction on k. Question #3 showed it's true for £ = 1 and question
#5 showed it when k = 2. Suppose it is true for k; we want to prove it for (k + 1).

We apply integration by parts. Let h(z) = f*) and suppose ¢'(z) = Ci(nz). Then W (z) =
FED(z) and g(z) = £ Cpy1(nz). Thus,

+1 2m +1 27
Moo [ @ de = [Tk g @) da
= @) @) |77 /%h’m (z) d
=k x)- - glx o0 F ; z)-g(x) dr
:l:l 1 k‘ 1’:271' 1 27‘(‘ k 1
= F <nf( )(2)Crp1(na) o T nk“/o FED(2)Cpyq (nz) da

_ E (e k) k)
= h [ 2m)Cryr(2nm) — f17(0)Cry1(0) F ; f Crr1(nz) dr

1 [P
e, fYT (@) Cpya (nx) da

Here, (H) is by induction hypothesis, and (P) is because f is smoothly periodic, so that
FB@n)Cra(2nm) = fP(0)Crir (0).

Now, since f("”“) and Cy,1 are continuous, there is some constant f;1 > 0 so that

FHD(2) Gy (na)

< Ly for all € [0,27]. Thus,

+1

27 1
S [ @0 o) ds

T

27
A, = / FED(2)Chgq (na) da
0

1 o k+1 1 2w
”kﬂ/o ‘f( )(l‘)Ck—H(nSU)’ dr < n’fﬂ/o lpir da

IN

= —2mly .
nk+1 +

The argument for B,, is the same; just exchange the roles of C; and S;.

Physical interpretation: If f(z) is a smoothly periodic function, then the Fourier coefficients
of f(x) become small faster than # for any choice of k. In other words, they get small very,
very quickly as n—o0. This means that the ‘high frequency’ component of f(x) contains very little
energy.



