
Math 110 —Assignment #6
Due: Monday, February 10

• Justify your answers. Show all steps in your computations.

• Please indicate your final answer by putting a box around it.

• Please write neatly and legibly. Illegible answers will not be graded.

• Math 110A: When finished, please give your assignment to Stefan or leave it under his
door.

• Math 110B: When finished, please place your assignment in slot marked Math 110 in
the big white box outside the Math Department Office in Lady Eaton College.

Let f : [0, 2π]−→R be a function. For n = 1, 2, 3, . . ., we define the Fourier Coefficients:

An =

∫ 2π

0

f(x) · cos(nx) dx, and Bn =

∫ 2π

0

f(x) · sin(nx) dx.

For example, if f(x) = sin3(x), and n = 7, then

A7 =

∫ 2π

0

sin3(x) · cos(7x) dx, and B7 =

∫ 2π

0

sin3(x) · sin(7x) dx.

Physically speaking, if f(x) describes the vibration of a string, then A7 and B7 measure the
amount of energy vibrating at 7 cycles per second (ie. 7 Hz). Likewise, A8 and B8 measure the
amount of energy vibrating at 8 Hz, etc.

Suppose f(x) = sin3(x).

1. Compute f ′(x) and f ′′(x).

Solution: f ′(x) = 3 sin2(x) cos(x) and f ′′(x) = 6 sin(x) cos2(x)− 3 sin3(x).

2. Show that |f ′(x)| ≤ 3 for all x ∈ [0, 2π], and |f ′(x)| ≤ 9 for all x ∈ [0, 2π].

Solution: |sin(x)| ≤ 1 and |cos(x)| ≤ 1 for all x. Thus, |f ′(x)| =
∣

∣3 sin2(x) cos(x)
∣

∣ =
3 |sin(x)| · |cos(x)| ≤ 3 · 1 · 1 = 3.

Likewise, |f ′′(x)| =
∣

∣6 sin(x) cos2(x)− 3 sin3(x)
∣

∣ ≤(∆)

∣

∣6 sin(x) cos2(x)
∣

∣+
∣

∣3 sin3(x)
∣

∣ =
6 |sin(x)| · |cos(x)|2 + 3 |sin(x)|3 ≤ 6 · 1 · 12 + 3 · 13 = 9.

Here, (∆) is the Triangle Inequality.
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3. If A7 is the Fourier coefficient defined above, show that

A7 =
−3

7

∫ 2π

0

sin(x)2 cos(x) · sin(7x) dx.

(Hint: Use integration by parts). Generalize this to show that, for any n = 1, 2, 3, . . .,

An =
−3

n

∫ 2π

0

sin(x)2 cos(x)·sin(nx) dx, and Bn =
3

n

∫ 2π

0

sin(x)2 cos(x)·cos(nx) dx.

Solution: We apply integration by parts. Let f(x) = sin3(x), and suppose g′(x) = cos(nx). Thus,
f ′(x)

#1
3 sin2(x) cos(x) and g(x) = 1

n sin(nx), so that

An =
∫ 2π

0
sin3(x) · cos(nx) dx =

∫ 2π

0
f(x) · g′(x) dx

= f(x) · g(x)
∣

∣

∣

x=2π

x=0
−
∫ 2π

0
f ′(x) · g(x) dx

=
1
n

sin3(x) · sin(nx)
∣

∣

∣

x=2π

x=0
− 1

n

∫ 2π

0
3 sin(x)2 cos(x) · sin(nx) dx

=
1
n

(

sin3(2π) · sin(2nπ)− sin3(0) · sin(0)
)

− 3
n

∫ 2π

0
sin(x)2 cos(x) · sin(nx) dx

(P)
− 3
n

∫ 2π

0
sin(x)2 cos(x) · sin(nx) dx.

To see equality (P ), observe that sin3(2π) = sin3(0) and sin(2nπ) = sin(0); hence,

sin3(2π) · sin(2nπ) = sin3(0) · sin(0).

Likewise, if g′(x) = sin(nx), then g(x) = −1
n cos(nx), so that

Bn =
∫ 2π

0
sin3(x) · sin(nx) dx =

∫ 2π

0
f(x) · g′(x) dx

= f(x) · g(x)
∣

∣

∣

x=2π

x=0
−
∫ 2π

0
f ′(x) · g(x) dx

=
−1
n

sin3(x) · cos(nx)
∣

∣

∣

x=2π

x=0
+

1
n

∫ 2π

0
3 sin(x)2 cos(x) · cos(nx) dx

=
−1
n

(

sin3(2π) · cos(2nπ)− sin3(0) · cos(0)
)

+
3
n

∫ 2π

0
sin(x)2 cos(x) · cos(nx) dx

(P)

3
n

∫ 2π

0
sin(x)2 cos(x) · cos(nx) dx,

where equality (P ) is because sin3(2π) · cos(2nπ) = sin3(0) · cos(0).

4. Conclude that, for all n = 1, 2, 3, . . .,

|An| ≤ 6π

n
, and |Bn| ≤ 6π

n
.
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(For example, A60 <
π
10

.) Hence, there is ‘little energy’ in the ‘high frequency’ vibrations.

(Hint: Do not explicitly compute any integrals. Instead, combine #2 and #3, and use
the Comparison Properties of the Integral from §5.2 of the text).

Solution: From #3, we know that An =
−1
n

∫ 2π

0
f ′(x) · sin(nx) dx. From #2, we know that

|f ′(x)| ≤ 3 for all x ∈ [0, 2π]. Thus,

|An| =
∣

∣

∣

∣

−1
n

∫ 2π

0
f ′(x) · sin(nx) dx

∣

∣

∣

∣

=
1
n

∣

∣

∣

∣

∫ 2π

0
f ′(x) · sin(nx) dx

∣

∣

∣

∣

≤(∗)
1
n

∫ 2π

0

∣

∣

∣f ′(x) · sin(nx)
∣

∣

∣ dx =
1
n

∫ 2π

0

∣

∣f ′(x)
∣

∣ · |sin(nx)| dx

≤ 1
n

∫ 2π

0
3 · 1 dx =

1
n

6π =
6π
n
.

Here, inequality (∗) is by Comparison Property #8 on page 387 of §5.2.

The argument for Bn is the same, only with cos(nx) instead of sin(nx).

5. Repeat the argument from #3 to show that for any n = 1, 2, 3, . . .,

An =
−3

n2

∫ 2π

0

(

2 sin(x) cos2(x)− sin3(x)
)

· cos(nx) dx,

and Bn =
−3

n2

∫ 2π

0

(

2 sin(x) cos2(x)− sin3(x)
)

· sin(nx) dx.

Solution: We apply integration by parts. Let h(x) = sin2(x) cos(x), and suppose g′(x) = sin(nx).
Thus, h′(x)

#1
2 sin(x) cos2(x)− sin2(x) and g(x) = −1

n cos(nx), so that

∫ 2π

0
sin2(x) cos(x) · sin(nx) dx

=
∫ 2π

0
h(x) · g′(x) dx = h(x) · g(x)

∣

∣

∣

x=2π

x=0
−
∫ 2π

0
h′(x) · g(x) dx

=
−1
n

sin2(x) cos(x) · cos(nx)
∣

∣

∣

x=2π

x=0
+

1
n

∫ 2π

0

(

2 sin(x) cos2(x)− sin2(x)
)

· cos(nx) dx

=
1
n

(

sin2(2π) cos(2π) · sin(2nπ)− sin2(0) cos(0) · sin(0)
)

+
1
n

∫ 2π

0

(

2 sin(x) cos2(x)− sin2(x)
)

· cos(nx) dx

(P)

1
n

∫ 2π

0

(

2 sin(x) cos2(x)− sin2(x)
)

· cos(nx) dx.

where equality (P ) is because sin2(2π) cos(2π) · sin(2nπ) = sin2(0) cos(0) · sin(0). Thus,

An
(by#3)

−3
n

∫ 2π

0
sin(x)2 cos(x)·sin(nx) dx =

−3
n2

∫ 2π

0

(

2 sin(x) cos2(x)− sin3(x)
)

·cos(nx) dx.

The proof for Bn is similar.
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6. Repeat the argument from #4 to conclude that, for all n = 1, 2, 3, . . .,

|An| ≤ 18π

n2
and |Bn| ≤ 18π

n2
.

(For example, A60 < π
200

.) Hence, there is very little energy in the ‘high frequency’

vibrations. Solution: From #5, we know that An =
−1
n2

∫ 2π

0
f ′′(x) · cos(nx) dx. From #2,

we know that |f ′′(x)| ≤ 9 for all x ∈ [0, 2π]. Thus,

|An| =
∣

∣

∣

∣

−1
n2

∫ 2π

0
f ′′(x) · cos(nx) dx

∣

∣

∣

∣

=
1
n2

∣

∣

∣

∣

∫ 2π

0
f ′′(x) · cos(nx) dx

∣

∣

∣

∣

≤(∗)
1
n2

∫ 2π

0

∣

∣

∣f ′′(x) · cos(nx)
∣

∣

∣ dx =
1
n2

∫ 2π

0

∣

∣f ′′(x)
∣

∣ · |cos(nx)| dx

≤ 1
n2

∫ 2π

0
9 · 1 dx =

1
n2

18π =
18π
n2

.

Here, inequality (∗) is by Comparison Property #8 on page 387 of §5.2.

The argument for Bn is the same, only with sin(nx) instead of cos(nx).

7. A function f : [0, 2π]−→R is called smoothly periodic if:

• f(2π) = f(0);

• f ′(2π) = f ′(0);

• f ′′(2π) = f ′′(0);

• .....and, for all k, f (k)(2π) = f (k)(0), where f (k) is the kth derivative of f(x).

(For example, f(x) = sin2(x) is smoothly periodic. )

Generalize the previous argument: Show that, if f is any smoothly periodic function,
then for any k = 1, 2, 3, . . .,

An =
±1

nk

∫ 2π

0

f (k)(x) ·Ck(nx) dx, and Bn =
±1

nk

∫ 2π

0

f (k)(x) · Sk(nx) dx.

Here, if k is even, then we define Ck(x) = cos(x) and Sk(x) = sin(x); on the other hand,
if k is odd, then we define Ck(x) = sin(x) and Sk(x) = cos(x).

(Hint: Proceed by induction on k)

Conclude that, for any k = 1, 2, 3, . . . there is some constant `k such that

|An| ≤ 2π`k
nk

and |Bn| ≤ 2π`k
nk

.

Give a physical interpretation of this result.
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Solution: We prove the result by induction on k. Question #3 showed it’s true for k = 1 and question
#5 showed it when k = 2. Suppose it is true for k; we want to prove it for (k + 1).

We apply integration by parts. Let h(x) = f (k) and suppose g′(x) = Ck(nx). Then h′(x) =
f (k+1)(x) and g(x) = ±1

n Ck+1(nx). Thus,

An
(H)

±1
nk

∫ 2π

0
f (k)(x) ·Ck(nx) dx =

±1
nk

∫ 2π

0
h(x) · g′(x) dx

=
±1
nk

(

h(x) · g(x)
∣

∣

∣

x=2π

x=0
∓
∫ 2π

0
h′(x) · g(x) dx

)

=
±1
nk

(

1
n
f (k)(x)Ck+1(nx)

∣

∣

∣

x=2π

x=0
∓ 1

nk+1

∫ 2π

0
f (k+1)(x)Ck+1(nx) dx

)

=
±1
nk+1

(

f (k)(2π)Ck+1(2nπ)− f (k)(0)Ck+1(0) ∓
∫ 2π

0
f (k+1)Ck+1(nx) dx

)

(P)

±1
nk+1

∫ 2π

0
f (k+1)(x)Ck+1(nx) dx

Here, (H) is by induction hypothesis, and (P ) is because f is smoothly periodic, so that

f (k)(2π)Ck+1(2nπ) = f (k)(0)Ck+1(0).

Now, since f (k+1) and Ck+1 are continuous, there is some constant `k+1 > 0 so that
∣

∣

∣f (k+1)(x)Ck+1(nx)
∣

∣

∣ ≤ `k+1 for all x ∈ [0, 2π]. Thus,

|An| =
∣

∣

∣

∣

±1
nk+1

∫ 2π

0
f (k+1)(x)Ck+1(nx) dx

∣

∣

∣

∣

=
1

nk+1

∣

∣

∣

∣

∫ 2π

0
f (k+1)(x)Ck+1(nx) dx

∣

∣

∣

∣

≤ 1
nk+1

∫ 2π

0

∣

∣

∣f (k+1)(x)Ck+1(nx)
∣

∣

∣ dx ≤ 1
nk+1

∫ 2π

0
`k+1 dx

=
1

nk+1
2π`k+1.

The argument for Bn is the same; just exchange the roles of Ck and Sk.

Physical interpretation: If f(x) is a smoothly periodic function, then the Fourier coefficients

of f(x) become small faster than 1
nk+1 , for any choice of k. In other words, they get small very,

very quickly as n→∞. This means that the ‘high frequency’ component of f(x) contains very little

energy.

5


