Math 110 — Assignment #2

Due: Monday, October 7th

1. An archer takes aim at a target. If he releases the arrow at an angle of θ to the horizontal, then it will strike the target at a distance (in millimetres) of $f(\theta)$ from the bull's eye, where

$$f(\theta) = \sin(\theta) \cdot (\theta^2 - 900).$$

Thus, for example, if he releases the arrow at an angle of precisly 30° to the horizontal, he will score a bull's eye, whereas if he releases the arrow at 45° , he will miss the bull's eye by a distance of $\sin(45^{\circ}) \cdot (45^{2} - 900) = \frac{1}{\sqrt{2}} 1125 \text{ mm} \approx 795 \text{ mm}$, or 79.5 cm.

The archer's aim is good enough that he always releases the arrow at an angle of between 20° and 40° .

(a) How close to 30° must be release the arrow to hit within 1 mm of the target? (Hint: Find some δ so that, if $|\theta - 30| < \delta$, then $|f(\theta)| < 1$. It doesn't have to be the best possible δ).

Solution: We want to find a $\delta > 0$ so that, if $|x - 30| < \delta$, then |f(x)| < 1. First, write an expression for |f(x)|:

$$|f(\theta)| = \left| \sin(\theta) \cdot (\theta^2 - 900) \right| = \left| \sin(\theta) \right| \cdot \left| (\theta + 30) \cdot (\theta - 30) \right|$$
$$= \left| \sin(\theta) \right| \cdot \left| \theta + 30 \right| \cdot \left| \theta - 30 \right|. \tag{1}$$

Since $-1 \le \sin(\theta) \le 1$, we know that $|\sin(\theta)| \le 1$. Thus, we can simplify expression (1) to:

$$|f(\theta)| = |\sin(\theta)| \cdot |\theta + 30| \cdot |\theta - 30| \le 1 \cdot |\theta + 30| \cdot |\theta - 30| = |\theta + 30| \cdot |\theta - 30|$$
 (2)

Next, recall that $20 < \theta < 40$. Thus, adding 30 to everything, we get: $50 = 20 + 30 < \theta + 30 < 40 + 30 = 70$. Since $0 < \theta + 30 < 70$, we conclude that $|\theta + 30| < 70$. Thus, we can simplify (2) to:

$$|f(\theta)| \leq |\theta + 30| \cdot |\theta - 30| \leq 70 \cdot |\theta - 30| \tag{3}$$

So, if $|\theta-30|<\delta$, then (3) implies that $|f(\theta)|<70\delta$. So, if $\delta=\frac{1}{70}$, then $|f(\theta)|<70\delta<1$.

Conclusion: If the archer releases the arrow within the range of $30 - \frac{1}{70}$ to $30 + \frac{1}{70}$, then the arrow will strike within 1 mm of the bull's eye.

(b) Generalize this argument to show that $\lim_{\theta \to 30} f(\theta) = 0$. Conclude that f is continuous at $\theta = 30$.

Solution: For any $\epsilon>0$, we need a $\delta>0$ so that, if $0<|x-30|<\delta$, then $|f(\theta)|<\epsilon$. In part (a), we showed:

If
$$|\theta - 30| < \delta$$
, then $|f(\theta)| < 70\delta$. (4)

So, given $\epsilon>0$, let $\delta=\frac{\epsilon}{70}$. Then $70\delta=70\frac{\epsilon}{70}=\epsilon$. Hence, if $|\theta-30|<\delta$, then (4) implies that $|f(\theta)|<70\delta=\epsilon$, as desired.

Thus, $\lim_{\theta \to 30} f(\theta) = 0$. But f(30) = 0, hence $\lim_{\theta \to 30} f(\theta) = f(30)$, so f is continuous at $\theta = 30$. \square

(2 pts)

2. Let $f(x) = \frac{\sin(x)(x^2+1)}{x^3-5}$.

Use an $\epsilon - N$ proof to show that $\lim_{x \to \infty} f(x) = 0$. That is: for any $\epsilon > 0$, you must find some N > 0 so that, if x > N, then $|f(x)| < \epsilon$.

Solution: Divide numerator and denominator by x^3 to get:

$$f(x) = \frac{x^{-3}}{x^{-3}} \cdot \frac{\sin(x)(x^2+1)}{x^3-5} = \frac{\sin(x)\left(\frac{1}{x} + \frac{1}{x^3}\right)}{1 - \frac{5}{x^3}}$$

Thus

$$\left| f(x) \right| = \frac{\left| \sin(x) \right| \cdot \left| \frac{1}{x} + \frac{1}{x^3} \right|}{\left| 1 - \frac{5}{x^3} \right|} \le \frac{\left| \frac{1}{x} + \frac{1}{x^3} \right|}{\left| 1 - \frac{5}{x^3} \right|}$$
 (5)

Now, if x > 2, then $x^3 > 8$, so $\frac{3}{8} = 1 - \frac{5}{8} < 1 - \frac{5}{x^3}$, so

$$\frac{3}{8} < \left| 1 - \frac{5}{x^3} \right|$$

If we take reciprocals, we must reverse the direction of the inequalities, to get:

$$\frac{1}{|1 - \frac{5}{x^3}|} < \frac{8}{3}$$

so (5) simplifies to

$$\left| f(x) \right| \le \frac{\left| \frac{1}{x} + \frac{1}{x^3} \right|}{\left| 1 - \frac{5}{x^3} \right|} \le \frac{8}{3} \cdot \left| \frac{1}{x} + \frac{1}{x^3} \right| = \frac{8}{3} \cdot \left| \frac{1}{x} \right| \cdot \left| 1 + \frac{1}{x^2} \right|$$
 (6)

Now, if x>2, then $x^2>4$, so $0<\frac{1}{x^2}<\frac{1}{4}$, and so $0<1+\frac{1}{x^2}<1+\frac{1}{4}=\frac{5}{4}$. Hence, $\left|1+\frac{1}{x^2}\right|<\frac{5}{4}$. Hence, (6) simplifies to:

$$\left| f(x) \right| \leq \frac{8}{3} \cdot \left| \frac{1}{x} \right| \cdot \left| 1 + \frac{1}{x^2} \right| \leq \frac{8}{3} \cdot \frac{5}{4} \cdot \left| \frac{1}{x} \right| = \frac{10}{3} \left| \frac{1}{x} \right| \tag{7}$$

Now, we want $\left|f(x)\right|<\epsilon.$ From (7), we know it is sufficient to have

$$\frac{10}{3} \left| \frac{1}{x} \right| \quad < \quad \epsilon \tag{8}$$

which is equivalent to

$$\left|\frac{1}{x}\right| \quad < \quad \frac{3\epsilon}{10} \tag{9}$$

which is equivalent to

$$|x| > \frac{10}{3\epsilon} \tag{10}$$

Working backwards, we conclude: if x>2, and $x>\frac{10}{3\epsilon}$, then (10) is satisfied, which is equivalent to (9), which is equivalent to (8), which implies $\left|f(x)\right|<\epsilon$, which is what we wanted.

Bonus Problem: (For fun)

Recall that the **integers** are the numbers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$. A real number x is **rational** if $x = \frac{n}{m}$ for some integers n and m. For example, -2, 0, and $\frac{4}{3}$ are rational.

A real number x is **irrational** if it is not rational. For example, π and $\sqrt{2}$ are irrational.

- 1. Show any number with a finite decimal expansion (eg. 0.1342) is rational. (Hint: $0.1342 = \frac{1342}{10000}$)
- 2. Conclude that the rational numbers are dense, meaning that, for any real numbers x, and any $\epsilon > 0$ there is a rational number q with $|x q| < \epsilon$. (Hint: Consider the decimal expansion of x; truncate it and apply (1))
- 3. If r is rational, but i is irrational, then show that $r \cdot i$ is also irrational. (Hint: Observe that $i = \frac{1}{n}r \cdot i$.)
- 4. Conclude that that the irrational numbers are dense, meaning that, for any real numbers x, and any $\epsilon > 0$ there is an irrational number i with $|x i| < \epsilon$. You may use the fact that $\sqrt{2}$ is irrational. (Hint: Use (2) to find a rational number close to $x/\sqrt{2}$. Now multiply by $\sqrt{2}$ and apply (3))
- 5. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ as follows: $f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational;} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$ Show that f is discontinuous at every irrational x. (Hint: Apply(2))
- 6. Show that f is discontinuous at every nonzero rational x. (Hint: Apply (4))
- 7. Show that f is continuous at 0. (Hint: If y is close to 0, then either y is rational or irrational; either way show that f(y) is close to f(0) = 0.)
- 8. Conclude that f is discontinuous everywhere except at zero.