

Mathematics 1121H – Calculus II

TRENT UNIVERSITY, Winter 2026

Solutions to Assignment #3

Due on Friday, 30 January.

The *Cantor set* C is defined by the following process:

Step 0. Start with the closed unit interval $[0, 1]$.

Step 1. Remove the open middle third of the interval, leaving $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$.

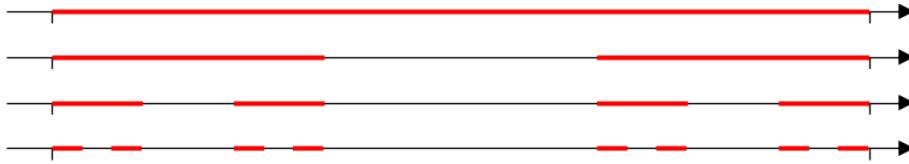
Step 2. Remove the open middle third of each of the remaining intervals, leaving $[0, \frac{1}{9}]$, $[\frac{2}{9}, \frac{3}{9}]$, $[\frac{6}{9}, \frac{7}{9}]$ and $[\frac{8}{9}, 1]$.

\vdots

Step n . Remove the open middle third of each of the intervals remaining after step $n - 1$, leaving $[0, \frac{1}{3^n}]$, $[\frac{2}{3^n}, \frac{3}{3^n}]$, \dots , $[\frac{3^n-1}{3^n}, 1]$

\vdots

Here is a picture of Steps 0 through 3:



C , the Cantor set, is the limit of the process, *i.e.* what remains after infinitely many steps. Note that C is not empty; for example, $\frac{1}{3} \in C$.

1. What is the total length of the intervals removed from $[0, 1]$ to make C ? [2]

HINT. The sum of a *geometric series* $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \dots$ is $\frac{a}{1-r}$, as long as the *common ratio* r satisfies $|r| < 1$.

SOLUTION. At step 1, we remove an interval of length $\frac{1}{3}$ from the interval $[0, 1]$; at step 2, we remove two intervals of length $\frac{1}{9}$; at step 3, we remove four intervals of length $\frac{1}{27}$; and so on for a total length of $\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \dots$. It's not hard to see that this is a geometric series with first term $a = \frac{1}{3}$ and common ratio $r = \frac{2}{3}$, and $|\frac{2}{3}| < 1$, so the total length of the intervals removed in the process of creating the Cantor set is

$$\text{length}([0, 1] \setminus C) = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \dots = \frac{\frac{1}{3}}{1 - \frac{2}{3}} = \frac{\frac{1}{3}}{\frac{1}{3}} = 1. \quad \square$$

2. Suppose that $f(x) = \begin{cases} 1 & x \in C \\ 0 & x \notin C \end{cases}$. What should $\int_0^1 f(x) dx$ be? Why? [You need not give an actual proof.] [2]

SOLUTION. We should have $\int_0^1 f(x) dx = 0$. The interval $[0, 1]$ has length 1 and the total length of the intervals removed from $[0, 1]$ by the solution to question 1 is 1, so the total “length” of the Cantor set C ought to be $1 - 1 = 0$. We then ought to have something like

$$\int_0^1 f(x) dx = \int_C 1 dx + \int_{[0,1] \setminus C} 0 dx = 1 \cdot \text{length}(C) + 0 \cdot \text{length}([0, 1] \setminus C) = 1 \cdot 0 + 0 \cdot 1 = 0. \quad \square$$

3. Suppose that $g(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. Prove that $g(x)$ is not Riemann integrable on $[0, 1]$. [4]

SOLUTION. Recall that between any two real numbers we can find a rational number and also an irrational number. It follows that between any two real numbers $g(x)$ takes on the value 1 and also – at some other point – takes on the value 0. This, in turn, means that for any partition $P = \{t_0, t_1, t_2, \dots, t_n\}$ of $[0, 1]$, we have

$$m_i = \inf \{g(x) \mid t_{i-1} \leq x \leq t_i\} = 0$$

and $M_i = \sup \{g(x) \mid t_{i-1} \leq x \leq t_i\} = 1$.

Thus, for every partition P of $[0, 1]$,

$$\begin{aligned} L(f, P) &= m_1(t_1 - t_0) + m_2(t_2 - t_1) + \dots + m_n(t_n - t_{n-1}) \\ &= 0(t_1 - t_0) + 0(t_2 - t_1) + \dots + 0(t_n - t_{n-1}) = 0 \\ \text{and } U(f, P) &= M_1(t_1 - t_0) + M_2(t_2 - t_1) + \dots + M_n(t_n - t_{n-1}) \\ &= 1(t_1 - t_0) + 1(t_2 - t_1) + \dots + 1(t_n - t_{n-1}) = t_n - t_0 = 1 - 0 = 1. \end{aligned}$$

This means that for all $\varepsilon > 0$ with $\varepsilon < 1$ and all partitions P of $[0, 1]$, we have

$$U(f, P) - L(f, P) = 1 - 0 = 1 \not< \varepsilon.$$

By Theorem 4 of the handout *Darboux’s Version of the Riemann Integral* it follows that $g(x)$ is not integrable on $[0, 1]$. \square

4. Despite the fact that $g(x)$ is not Riemann integrable on $[0, 1]$, what should $\int_0^1 g(x) dx$ be? Why? [2]

SOLUTION. We should have $\int_0^1 g(x) dx = 0$. The reason is similar to that in the solution to question 2: the “length” of all of \mathbb{Q} , never mind $\mathbb{Q} \cap [0, 1]$, is 0. This is a consequence of \mathbb{Q} being *countable*, meaning that it is possible to list all the rational numbers in a list indexed by the natural numbers $\mathbb{N} = \{0, 1, 2, 3, \dots\}$. (Ask about how to check this if you haven’t seen it before!) Suppose $q_0, q_1, q_2, q_3, \dots$ is such a list of all the rational numbers.

Given any $\varepsilon > 0$, we can enclose all the rational numbers in open intervals whose combined length is $\leq \varepsilon$ as follows:

Enclose q_0 in $(q_0 - \frac{\varepsilon}{4}, q_0 + \frac{\varepsilon}{4})$, which has length $\frac{\varepsilon}{2}$.
 Enclose q_1 in $(q_1 - \frac{\varepsilon}{8}, q_1 + \frac{\varepsilon}{8})$, which has length $\frac{\varepsilon}{4}$.
 Enclose q_2 in $(q_2 - \frac{\varepsilon}{16}, q_2 + \frac{\varepsilon}{16})$, which has length $\frac{\varepsilon}{8}$.
 \vdots
 Enclose q_n in $(q_n - \frac{\varepsilon}{2^{n+2}}, q_n + \frac{\varepsilon}{2^{n+2}})$, which has length $\frac{\varepsilon}{2^{n+1}}$.
 \vdots

The total length of all of these open intervals is

$$\frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \cdots + \frac{\varepsilon}{2^{n+1}} + \cdots,$$

which is a geometric series with first term $\frac{\varepsilon}{2}$ and common ratio $r = \frac{1}{2}$. Since $|\frac{1}{2}| < 1$, it follows that the total length is $\frac{\frac{\varepsilon}{2}}{1 - \frac{1}{2}} = \frac{\frac{\varepsilon}{2}}{\frac{1}{2}} = \varepsilon$. Since many of these intervals must actually overlap [Why?], their combined length is actually $< \varepsilon$.

Since the rational numbers can be enclosed in a collection of intervals with a combined length $< \varepsilon$ for every ε , the “length” of all of \mathbb{Q} , and hence also of $[0, 1] \cap \mathbb{Q}$, must be 0. By reasoning similar to that in the solution to question 2, it follows that

$$\begin{aligned} \int_0^1 g(x) dx &= \int_{[0,1] \cap \mathbb{Q}} 1 dx + \int_{[0,1] \setminus \mathbb{Q}} 0 dx \\ &= 1 \cdot \text{length}([0, 1] \cap \mathbb{Q}) + 0 \cdot \text{length}([0, 1] \setminus \mathbb{Q}) \\ &= 1 \cdot 0 + 0 \cdot 1 = 0. \quad \square \end{aligned}$$