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Instructions
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1. Compute any four (4) of integrals a–f. [12 = 4 × 3 each]

a.

∫
1

1− t2
dt b.

∫ 1

0

arctan(x) dx c.

∫
z2

z3 + z
dz

d.

∫ ∞
0

ye−y
2

dy e.

∫
cos3(w) dw f.

∫ 1

0

√
1− r2 dr

Solutions. a. (Trigonometric substitution) We will use the substitution t = sin(θ),

so dt = cos(θ) dθ. Note that we then have cos(θ) =
√

1− sin2(θ) =
√

1− t2, sec(θ) =

1

cos(θ)
=

1√
1− t2

, and tan(θ) =
sin(θ)

cos(θ)
=

t√
1− t2

.∫
1

1− t2
dt =

∫
1

1− sin2(θ)
cos(θ) dθ =

∫
cos(θ)

cos2(θ)
dθ =

∫
1

cos(θ)
dθ

=

∫
sec(θ) dθ = ln (sec(θ) + tan(θ)) + C

= ln

(
1√

1− t2
+

t√
1− t2

)
+ C = ln

(
1 + t√
1− t2

)
+ C �

a. (Partial fractions) Since
1

1− t2
has a lower degree in the numerator (0) than the

denominator (2), we need not divide the latter into the former. Factoring the denominator,

1− t2 = (1− t)(1 + t), so
1

1− t2
=

A

1− t
+

B

1 + t
for some constants A and B. Since

1

1− t2
=

A

1− t
+

B

1 + t
=
A(1 + t) +B(1− t)

1− t2
=

(A−B)t+ (A+B)

1− t2
,

we must have A − B = 0 and A + B = 1. It follows from the first equation that A = B;

plugging this into the second equation gives us A+A = 2A = 1, so A =
1

2
and thus B =

1

2
,

too. This means that∫
1

1− t2
dt =

∫
1/2

1− t
dt+

∫
1/2

1 + t
dt =

1

2

∫
1

1− t
dt+

1

2

∫
1

1 + t
dt .

We will use the respective substitutions u = 1− t, so du = (−1) dt and dt = (−1) du, and
w = 1 + t, so dw = dt, to handle each of the last two integrals above. Thus∫

1

1− t2
dt =

1

2

∫
1

1− t
dt+

1

2

∫
1

1 + t
dt =

1

2

∫
1

u
(−1) du+

1

2

∫
1

w
dw

= −1

2
ln(u) +

1

2
ln(w) + C = −1

2
ln(1− t) +

1

2
ln(1 + t) + C

=
1

2
ln

(
1 + t

1− t

)
+ C = ln

(√
1 + t

1− t

)
+ C

Note that this is the same answer, after a little algebra, as was obtained above using a
trigonometric substitution. �



b. (Integration by parts) We will use integration by parts, with u = arctan(x) and v′ = 1,

so u′ =
1

1 + x2
and v = x. To compute the integral arising from this, we will use the

substution w = 1 + x2, so dw = 2x dx and x dx = 1
2 dw.∫ 1

0

arctan(x) dx = x arctan(x)|10 −
∫ 1

0

1

1 + x2
· x dx

= 1 arctan(1)− 0 arctan(0)−
∫ x=1

x=0

1

w
· 1

2
dw

=
π

4
− 0− 1

2
ln(w)

∣∣∣∣x=1

x=0

=
π

4
− 1

2
ln
(
1 + x2

)∣∣∣∣x=1

x=0

=
π

4
−
[

1

2
ln(2)− 1

2
ln(1)

]
=
π

4
−
[

1

2
ln(2)− 1

2
· 0
]

=
π

4
− 1

2
ln(2) �

c. (Algebra and substitution) After simplifying the integrand, we shall use the substitution
w = z2 + 1, so dw = 2z dz and z dz = 1

2 dw.∫
z2

z3 + z
dz =

∫
z2

z (z2 + 1)
dz =

∫
z

z2 + 1
dz =

∫
1

w
· 1

2
dw

=
1

2
ln(w) + C =

1

2
ln
(
z2 + 1

)
+ C �

c. (Partial fractions) Since
z2

z3 + z
has a lower degree in the numerator (2) than the

denominator (3), we need not divide the latter into the former. Factoring the denominator,
z3 +z = z

(
z2 + 1

)
, we note that z2 +1 ≥ 1 > 0 for all z, so it has no roots and hence is an

irreducible quadratic. It follows that the partial fraction decomposition of the integrand

has the form
z2

z3 + z
=
D

z
+
Ez + F

z2 + 1
for some constants D, E, and F . Since

z2

z3 + z
=
D

z
+
Ez + F

z2 + 1
=
D
(
z2 + 1

)
+ (Ez + F )z

z (z2 + 1)
=

(D + E)z2 + Fz +D

z3 + z
,

it follows that D +E = 1, F = 0, and D = 0, and hence that E = 1. This is fancy way of

showing that
z2

z3 + z
=

z

z2 + 1
. We may now continue in the same way as in the previous

solution after simplifying the integrand. �

d. Recall that, by definition,
∫∞
0
ye−y

2

dy = lim
a→∞

∫ a
0
ye−y

2

dy. To evaluate the limit, we

first need to compute the definite integral, which we will do with the aid of the substitution
u = −y2, so du = −2y dy and y dy = − 1

2 du.∫ a

0

ye−y
2

dy =

∫ y=a

y=0

eu
(
−1

2

)
du = −1

2
eu
∣∣∣∣y=a
y=0

= −1

2
e−y

2

∣∣∣∣y=a
y=0

=

(
−1

2
e−a

2

)
−
(
−1

2
e−0

2

)
=

1

2

(
1− e−a

2
)



It follows that∫ ∞
0

ye−y
2

dy = lim
a→∞

∫ a

0

ye−y
2

dy = lim
a→∞

1

2

(
1− e−a

2
)

=
1

2
(1− 0) =

1

2
,

because as a→∞, we have −a2 → −∞ and hence e−a
2 → 0. �

e. (Reduction formula) We will apply the reduction formula for integrating powers of

cosine, namely

∫
cosn(x) dx =

1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx.

∫
cos3(w) dw =

1

3
cos3−1(w) sin(w) +

3− 1

3

∫
cos3−2(w) dw

=
1

3
cos2(w) sin(w) +

2

3

∫
cos(w) dw

=
1

3
cos2(w) sin(w) +

2

3
sin(w) + C �

e. (Trig identity and substitution) We will use the trigonometric identity cos2(w) +
sin2(w) = 1 and the substitution u = sin(w), so du = cos(w) dw.∫

cos3(w) dw =

∫
cos2(w) cos(w) dw =

∫ (
1− sin2(w)

)
cos(w) dw

=

∫ (
1− u2

)
du = u− u3

3
+ C = sin(w)− 1

3
sin3(w) + C

We leave it to the interested reader to check, using suitable trigonometric manipulation,
that this answer is actually the same as the one obtained using the reduction formula. �

f. (Trig substitution) We will use the trigonometric substitution r = sin(θ), so dr =

cos(θ) dθ and change the limits as we go along,:
r 0 1
θ 0 π/2

. We will also use the same

cosine reduction formula used in the first solution to e above.∫ 1

0

√
1− r2 dr =

∫ π/2

0

√
1− sin2(θ) cos(θ) dθ =

∫ π/2

0

√
cos2(θ) cos(θ) dθ

=

∫ π/2

0

cos(θ) cos(θ) dθ =

∫ π/2

0

cos2(θ) dθ

=
1

2
cos2−1(θ) sin(θ)

∣∣∣∣π/2
0

+
2− 1

2

∫ π/2

0

cos2−2(θ) dθ

=
1

2
cos
(π

2

)
sin
(π

2

)
− 1

2
cos(0) sin(0) +

1

2

∫ π/2

0

cos0(θ) dθ

=
1

2
· 0 · 1− 1

2
· 1 · 0 +

∫ π/2

0

1 dθ = 0− 0− θ|π/20 =
π

2
− 0 =

π

2
�



2

2. Do any two (2) of parts a–c. [10 = 2 × 5 each]

a. Find the area of the finite region below y = 2− x and above y = x2.

b. Find the area of the surface obtained by revolving the curve y = x, for 0 ≤ x ≤ 4,
about the y-axis.

c. Find the volume of the solid obtained by revolving the region between y =
√
x and

y = 0, where 0 ≤ x ≤ 4, about the x-axis.

Sketches. For a, b, and c, respectively:

Solutions. a. We first need to work out where these two curves intersect. They will do so
for those values of x where x2 = 2−x, i.e. for x2+x−2 = 0. Since x2+x−2 = (x+2)(x−1),
this happens when x = −2 or x = −(−1) = 1. (If one doesn’t spot the factorization, the
quadratic equation will give the same answers pretty quickly.) Since the regions between
the two curves to the left of x = −2 and to the right of x = 1 are both infinite in extent,
the region in question is the one between x = −2 and x = 1, for which values of x we have
2 − x ≥ x2. (For example, 2 − 0 = 2 ≥ 0 = 02.) It follows that the area below y = 2 − x
and above y = x2 is:

Area =

∫ 1

−2

(
2− x− x2

)
dx =

(
2x− x2

2
− x3

3

)∣∣∣∣1
−2

=

(
2 · 1− 12

2
− 13

3

)
−
(

2 · (−2)− (−2)2

2
− (−2)3

3

)
=

7

6
−
(
−10

3

)
=

27

6
=

9

2
�

b. First, the increment of arc-length of the curve at x, where 0 ≤ x ≤ 4, is given by

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
dx

dx

)2

dx =
√

1 + 12 dx =
√

2 dx

Second, this increment of arc-length is revolved around the y-axis, that is, all the way
around a circle of radius r = x−0 = x and hence circumference 2πr = 2πx. We plug these



into the integral formula for the area of a surface of revolution:

Area =

∫ 4

0

2πr ds =

∫ 4

0

2πx

√
1 +

(
dy

dx

)2

dx =

∫ 4

0

2πx
√

2 dx =
√

2π

∫ 4

0

2x dx

=
√

2π · x2
∣∣∣4
0

=
√

2π · 16−
√

2π · 0 = 16
√

2π �

c. (Disks/Washers) Since y = 0, better known as the x-axis, is both the lower edge of the
region and the axis of rotation, the cross-section of the solid at x, where 0 ≤ x ≤ 4, is a
disk of radius r = y − 0 =

√
x, and hence of area πr2 = π (

√
x)

2
= πx. These disks are

perpendicular to the x-axis, so we should use the variable x in the integral. It follows that
the volume of the solid is:

Volume =

∫ 4

0

πr2 dx =

∫ 4

0

πx dx =
πx2

2

∣∣∣∣4
0

=
π16

2
− π0

2
= 8π �

c. (Cylindrical Shells) Since we are revolving the region about the x-axis, cylindrical shell
“cross-sections” are parallel to the x-axis and perpendicular to the y-axis, so we need to
work in terms of y rather than x. Note that the region between y =

√
x and y = 0 for

0 ≤ x ≤ 4 can also be described as the region between x = 4 and x = y2 for 0 ≤ y ≤ 2.
The cylindrical shell at y, where 0 ≤ y ≤ 2, has radius r = y and height h = 4 − y2, and
hence has area 2πrh = 2πy

(
4− y2

)
= 2π

(
4y − y3

)
. It follows that the volume of the solid

is:

Volume =

∫ 2

0

2πrh dy =

∫ 2

0

2π
(
4y − y3

)
dy = 2π

(
2y2 − y4

4

)∣∣∣∣2
0

= 2π

(
2 · 22 − 24

4

)
− 2π

(
2 · 02 − 04

4

)
= 2π · (8− 4)− 2π · 0 = 8π

In this particular case, cylindrical shells are a little harder to set up and use than disks. �
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3. Do either one (1) of parts a or b. [8]

a. Find the arc-length of the curve y =
1

4
x2 − 1

2
ln(x), where 1 ≤ x ≤ 2e.

b. Compute

∫
cos(x)

sin3(x) + sin(x)
dx.

Solutions. a. [I’m not even going to try to sketch this curve; if you want to know what
it looks like, have a computer plot it for you.] Note that

dy

dx
=

d

dx

(
1

4
x2 − 1

2
ln(x)

)
=

1

4
· 2x− 1

2
· 1

x
=

1

2

(
x− 1

x

)
.

We will plug this and our given limits for x into the arc-length formula and hope for the
best.

arc-length =

∫ 2e

1

ds =

∫ 2e

1

√
1 +

(
dy

dx

)2

dx =

∫ 2e

1

√
1 +

(
1

2

(
x− 1

x

))2

dx

=

∫ 2e

1

√
1 +

1

4

(
x2 − 2 +

1

x2

)
dx =

∫ 2e

1

√
1

4
x2 +

1

2
+

1

4x2
dx

=

∫ 2e

1

√
1

4

(
x2 + 2 +

1

x2

)
dx =

∫ 2e

1

√
1

4

(
x+

1

x

)2

dx

=

∫ 2e

1

1

2

(
x+

1

x

)
dx =

1

2

(
x2

2
+ ln(x)

)∣∣∣∣2e
1

=
1

2

(
4e2

2
+ ln(2e)

)
− 1

2

(
1

2
+ ln(2)

)
=

(
e2 +

1

2
ln(2) +

1

2
ln(e)

)
−
(

1

4
+

1

2
ln(2)

)
= e2 +

1

2
ln(2) +

1

2
· 1− 1

4
− 1

2
ln(2) = e2 +

1

4

Not a pretty answer, but it could have been worse. �



b. We will use the substitution z = sin(x), so dz = cos(x) dx. Then∫
cos(x)

sin3(x) + sin(x)
dx =

∫
1

z3 + z
dz ,

which last is the integral of a rational function and will be tackled using partial fraction
technology. The sharp-eyed may notice that the denominator is the same as the denomi-
nator in question 1c of this test, so the procedure is pretty much the same as in the partial
fraction solution to that problem.

Since
1

z3 + z
has a lower degree in the numerator (0) than the denominator (3), we

need not divide the latter into the former. Factoring the denominator, z3 +z = z
(
z2 + 1

)
,

we note that z2 + 1 ≥ 1 > 0 for all z, so it has no roots and hence is an irreducible
quadratic. It follows that the partial fraction decomposition of the integrand has the form

1

z3 + z
=
D

z
+
Ez + F

z2 + 1
for some constants D, E, and F . Since

1

z3 + z
=
D

z
+
Ez + F

z2 + 1
=
D
(
z2 + 1

)
+ (Ez + F )z

z (z2 + 1)
=

(D + E)z2 + Fz +D

z3 + z
,

it follows that D + E = 0, F = 0, and D = 1, and hence that E = −1.
Off we go. In one of the resulting integrals we will use the further substitution u =

z2 + 1, so du = 2z dz and z dz = 1
2 du.∫

cos(x)

sin3(x) + sin(x)
dx =

∫
1

z3 + z
dz =

∫
1

z
dz +

∫
−z

z2 + 1
dz

= ln(z)−
∫

1

u
· 1

2
du = ln(z)− 1

2
ln(u) + C

= ln(z)− 1

2
ln
(
z2 + 1

)
+ C

= ln (sin(x))− 1

2
ln
(
sin2(x) + 1

)
+ C

Just to show off a bit, one may rewrite this answer as ln

 sin(x)√
sin2(x) + 1

+ C. �

[Total = 30]


