Mathematics 1120H — Calculus II: Integrals and Series
TRENT UNIVERSITY, Winter 2020

Solutions to Assignment #5.1 — the Maple-less edition
Guaranteeing Convergence

INSTRUCTIONS: You may do one of Assignment #5.1 and the original Assignment #35.
Either way, please submit your solutions on or by the due date using the assignment
submission tool on Blackboard, preferably as a pdf. If that doesn’t work, please email it
to your instructor.

1 = (=D" 1 1 1 1
It’s a fact that — = e ! = —1-14=-—=4— = — +---. (We'll
s a fac a . e ,;) i +2 6+24 120—|— (We'll see

1
why this series adds up to — once we do Taylor series.)
e

Lo
6 24 k!

k
1"
1. Find a value of m such that Z (=1) =1-1+ is guaranteed

1
n! 2

n=0

1
to be within 0.0001 = 10~% of = for all k > m and explain why it’s guaranteed. /3]
e

oo
1)
SOLUTION. We will use the fact that the series Z u satisfies the conditions given in
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the Alternating Series Test.

First, since n! > 1 > 0 for all n > 0 and (—1)" alternates sign as n increases because
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Second, because we have (n 4 1)! = (n+ 1) -n! > n! for all n > 0, it follows that
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It is a consequence of the discussion on page 272 in Section 11.4 of the textbook, and

made explicit on page 2 of the lecture notes of 2020-03-18, that if Z an is a series meeting
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the conditions of the Alternating Series Test and A is the sum of the series, then the kth
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How big does k have to be to make m < 0.0001 = 10000? We will get this

inequality exactly when (k+1)! > 10000. Since 7! = 5040 < 10000 and 8! = 40320 > 10000,
we need to have k+1 > 8, i.e. kK > 7. Note that because n! is strictly increasing for n > 1,

1
— is strictly decreasing for n > 1. Thus, once we have a k such that

< 0.0001 =
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10000° every larger of value of k£ will also give it 1) < 0.0001 = 10000°
Thus if k£ > 7, it is guaranteed that
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this series adds up to Z once we do Taylor series.)
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SOLUTION. We will use the fact that the series E 2(—) satisfies the conditions given
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in the Alternating Series Test.

First, since 2n+1 > 1 > 0 for all n > 0 and (—1)" alternates sign as n increases, the
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Second, because we have 2(n+ 1)+ 1 =2n+3 > 2n+ 1 for all n > 0, it follows that
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Similarly to the solution to 1 above, it follows that

for all n > 0.
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How big does k have to be t that 0.0001 = 7 Well d
ow big does ave to be to ensure tha %13 < 10000 ell, we nee

10000 — 3 9997
to have 2k + 3 > 10000, i.e. k > = = 4998.5. The least such k is 4999.

Similarly to the argument in the solution to 1, since 2k + 3 is strictly increasing with &, it
follows that once we a k that works, every larger k£ will as well.
Thus if £ > 4999, its is guaranteed that
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Hence m = 4999 does the job. B
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The series nZ:% (dn +1)(dn +3) also adds up to % (To see why, do a little algebra to

answer question 3.)
3. How are these two series adding up to % related, besides having the same sum? [4/
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we used partial fractions simplify in order to integrate them. Perhaps simplifying them in

the same way here would help. Applying the partial fraction technology:
2 A B
(4n+1)(d4n+3) 4n+1 * 4n+3
A(4n+3)+ B(4n+1) (4A+4B)n+ (3A+ B)

SOLUTION. The terms in this series, , look a lot like the kind of things

(4n + 1)(4n + 3) (4n+ 1)(4n + 3)
It follows that 4A + 4B = 0 and 3A + B = 2. Solving for B in the second equation, B =
2—3A, and substituting into the first equation gives 44+4(2—3A) = 0,80 4A+8—12A4 = 0,
and thus —8A4 =0 — 8 = —8&. It follows that A=1and B=2—3-1= —1. Thus
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What happens when we plug this into the given series?
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The two series are basically the same series, allowing for a little algebraic manipulation.
The “combined term” form has some advantages in practice, though. It is a series of
positive terms, so it converges absolutely, where the other only converges conditionally,
and it turns you need a lot fewer terms to get a given degree of precision out of the partial
sums. W



