
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Winter 2019

Solutions to the Quizzes

Quiz #1. Wednesday, 20 June. [10 minutes]

Compute each of the following integrals.

1.

∫ π/2

0

cos(x)
√

sin(x) dx [3] 2.

∫
1

xln(x)
dx [2]

Solutions. 1. We will use the substitution u = sin(x), so
du

dx
= cos(x) and hence

du = cos(x) dx, and change the limits as we go along:
x 0 π/2
u 0 1

, since sin(0) = 0 and

sin (π/2) = 1.

∫ π/2

0

cos(x)
√

sin(x) dx =

∫ 1

0

√
u du =

∫ 1

0

u1/2 du =
u3/2

3/2

∣∣∣∣1
0

=
2

3
u3/2

∣∣∣∣1
0

=
2

3
· 13/2 − 2

3
· 03/2 =

2

3
− 0 =

2

3
�

2. We will use the substitution w = ln(x), so
dw

dx
=

1

x
and hence dw =

1

x
dx.

∫
1

xln(x)
dx =

∫
1

w
dw = ln(w) + C = ln (ln(x)) + C �

Quiz #2. Friday, 25 January. [10 minutes]

1. Compute

∫ 0

−1
x2ex+1 dx. [5]

Solution. We will use integration by parts twice, the first time with u = x2 and v′ = ex+1,
so that u′ = 2x and v =

∫
ex+1 dx =

∫
e · ex dx = e · ex = ex+1.∫ 0

−1
x2ex+1 dx = x2ex+1

∣∣0
−1 −

∫ 0

−1
2xex+1 dx = 02e0+1 − (−1)2e−1+1 − 2

∫ 0

−1
xex+1 dx

We use parts again with a = x and b′ = ex+1, so a′ = 1 and b = ex+1.

= 0− 1 · e0 − 2

[
xex+1

∣∣0
−1 −

∫ 0

−1
1ex+1 dx

]
= −1 · 1− 2

[
0e0+1 − (−1)e−1+1 − ex+1

∣∣0
−1

]
= −1− 2

[
0− (−1)e0 −

(
e0+1 − e−1+1

)]
= −1− 2

[
1 · 1−

(
e1 − e0

)]
= −1− 2 [1− (e− 1)] = −1− 2 [2− e] = −1− 2 · 2 + 2e = 2e− 5 �
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Quiz #3. Friday, 32 January 1 February. [12 minutes]

Compute each of the following integrals.

1.

∫ π/4

0

tan2(x) dx [2.5] 2.

∫ π/2

0

cos3(x) sin2(x) dx [2.5]

Solutions. 1. (Trig identity) We will use the trigonometric identity tan2(x) = sec2(x)−1.∫ π/4

0

tan2(x) dx =

∫ π/4

0

(
sec2(x)− 1

)
dx = (tan(x)− x)|π/40

=
(

tan
(π

4

)
− π

4

)
− (tan(0)− 0) =

(
1− π

4

)
− (0− 0) = 1− π

4
�

1. (Reduction formula) We will apply the reduction formula∫
tank(x) dx =

1

k − 1
tank−1(x)−

∫
tank−2(x) dx .

Here goes:∫ π/4

0

tan2(x) dx =
1

2− 1
tan2−1(x)

∣∣∣∣π/4
0

−
∫ π/4

0

tan2−2(x) dx

= tan(x)|π/40 −
∫ π/4

0

tan0(x) dx =
[
tan

(π
4

)
− tan(0)

]
−
∫ π/4

0

1 dx

= [1− 0]− x|π/40 = 1−
[π

4
− 0
]

= 1− π

4
�

2. (Trig identity and substitution) We will use the trigonometric identityt cos2(x) =
1− sin2(x) and then substitute u = sin(x), so du = cos(x) dx, and change limits as we go

along:
x 0 π/2
u 0 1

.

∫ π/2

0

cos3(x) sin2(x) dx =

∫ π/2

0

cos2(x) cos(x) sin2(x) dx

=

∫ π/2

0

(
1− sin2(x)

)
sin2(x) cos(x) dx =

∫ 1

0

(
1− u2

)
u2 du

=

∫ 1

0

(
u2 − u4

)
du =

(
u3

3
− u5

5

)∣∣∣∣1
0

=

(
13

3
− 15

5

)
−
(

03

3
− 05

5

)
=

(
1

3
− 1

5

)
− (0− 0)

=

(
5

15
− 3

15

)
− 0 =

2

15
�

2. (Trig identity and reduction formula) We will apply the trig identity sin2 x = 1−cos( x)
and the reduction formula∫

cosk(x) dx =
1

k
cosk−1(x) sin(x) +

k − 1

k

∫
cosk−2(x) dx .
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Here goes:∫ π/2

0

cos3(x) sin2(x) dx =

∫ π/2

0

cos3(x)
(
1− cos2(x)

)
dx =

∫ π/2

0

(
cos3(x)− cos5(x)

)
dx

=

∫ π/2

0

cos3(x) dx−
∫ π/2

0

cos5(x) dx

=

∫ π/2

0

cos3(x) dx−

[
1

5
cos4(x) sin(x)

∣∣∣∣π/2
0

+
4

5

∫ π/2

0

cos3(x) dx

]

=

∫ π/2

0

cos3(x) dx− 1

5
cos4(x) sin(x)

∣∣∣∣π/2
0

− 4

5

∫ π/2

0

cos3(x) dx

=
1

5

∫ π/2

0

cos3(x) dx− 1

5
cos4(x) sin(x)

∣∣∣∣π/2
0

=
1

5

[
1

3
cos2(x) sin(x)

∣∣∣∣π/2
0

+
2

3

∫ π/2

0

cos(x) dx

]

− 1

5

[
cos4

(π
2

)
sin
(π

2

)
− cos4(0) sin(0)

]
=

1

5

[
1

3
cos2(x) sin(x)

∣∣∣∣π/2
0

+
2

3
sin(x)

∣∣∣∣π/2
0

]
− 1

5

[
04 · 1− 14 · 0

]
=

1

5

[
1

3

(
cos2

(π
2

)
sin
(π

2

)
− cos2(0) sin(0)

)
+

2

3

(
sin
(π

2

)
− sin(0)

)]
− 1

5
· 0

=
1

5

[
1

3

(
02 · 1− 12 · 0

)
+

2

3
(1− 0)

]
=

1

5

[
1

3
· 02

3
· 1
]

=
1

5
· 2

3
=

2

15
�

Note. The truly gung-ho can work out how to use the reduction formula(s) for mixed
powers of sin(x) and cos(x) to solve question 2.
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Quiz #4. Friday, 8 February. [10 minutes]

1. Compute

∫
1√

4x2 + 8x+ 8
dx. [5]

Solution. Algebra, substitution, and trig substitution, oh my!∫
1√

4x2 + 8x+ 8
dx =

∫
1√

4 (x2 + 2x+ 2)
dx =

∫
1

2
√
x2 + 2x+ 1 + 1

dx

=
1

2

∫
1√

(x+ 1)2 + 1
dx Substitute u = x+ 1, so du = dx.

=
1

2

∫
1√

u2 + 1
du Substitute u = tan(θ), so du = sec2(θ) dθ.

=
1

2

∫
1√

tan2(θ) + 1
sec2(θ) dθ =

1

2

∫
sec2(θ)√
sec2(θ)

dθ

=
1

2

∫
sec2(θ)

sec(θ)
dθ =

1

2

∫
sec(θ) dθ =

1

2
ln (tan(θ) + sec(θ)) + C

=
1

2
ln
(
u+

√
u2 + 1

)
+ C =

1

2
ln
(

(x+ 1) +
√

(x+ 1)2 + 1
)

+ C

The truly gung-ho can rewrite the final expression as
1

2
ln
(

(x+ 1) +
√
x2 + 2x+ 2

)
+ C,

or even as ln

(√
(x+ 1) +

√
x2 + 2x+ 2

)
+C, but that’s probably more trouble than it’s

worth . . . �
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Quiz #5. Friday, 15 February. [17 minutes]

1. Compute

∫
x2 + x+ 5

(x2 + 4) (x+ 1)
dx. [5]

Solution. The integrand is a rational function, so we run through the usual partial
fractions checklist:

i. Since the numerator of the integrand has degree two, which is less than the degree three
of the denominator, we can proceed directly to factoring the denominator.

ii. The denominator,
(
x2 + 4

)
(x + 1), comes in at least partially factored form. As

x2 + 4 ≥ 4 > 0 for all x, the factor x2 + 4 has no roots and hence is an irreducible
quadratic, which means that the denominator came fully factored.

iii. The partial fraction decomposition of
x2 + x+ 5

(x2 + 4) (x+ 1)
is therefore

Ax+B

x2 + 4
+

C

x+ 1
for

some constants A, B, and C. Since

x2 + x+ 5

(x2 + 4) (x+ 1)
=
Ax+B

x2 + 4
+

C

x+ 1
=

(Ax+B)(x+ 1) + C
(
x2 + 4

)
(x2 + 4) (x+ 1)

=
Ax2 +Ax+Bx+B + Cx2 + 4C

(x2 + 4) (x+ 1)

=
(A+ C)x2 + (A+B)x+ (B + 4C)

(x2 + 4) (x+ 1)
,

it follows by comparing coefficients of like powers of x in the numerators at the beginning
and the end above that A+ C = 1, A+B = 1, and B + 4C = 5.

iv. We solve the linear equations obtained in the previous step for A, B, and C. The first
two equations tell us that C = 1 − A = B. Plugging this into the third equation gives
B + 4C = B + 4B = 5B = 5, and so B = 1, from which it now follows that C = B = 1

and A = 1−B = 1− 1 = 0. Thus
x2 + x+ 5

(x2 + 4) (x+ 1)
=

1

x2 + 4
+

1

x+ 1
.

v. Finally, we integrate:∫
x2 + x+ 5

(x2 + 4) (x+ 1)
dx =

∫ (
1

x2 + 4
+

1

x+ 1

)
dx =

∫
1

x2 + 4
dx+

∫
1

x+ 1
dx

Substitute x = 2u, so dx = 2 du, in the first integral,

and w = x+ 1, so dx = dw, in the second integral.

=

∫
1

(2u)2 + 4
2 du+

∫
1

w
dw =

∫
2

4u2 + 4
du+ ln(w)

=
2

4

∫
1

u2 + 1
du+ ln(w) =

1

2
arctan(u) + ln(w) + C

Substituting back, note that u =
x

2
and w = x+ 1.

=
1

2
arctan

(x
2

)
+ ln(x+ 1) + C �
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Quiz #6. Friday, 8 March. [12 minutes]

1. Consider the region below y =
√
x and above y = 0 for 0 ≤ x ≤ 1. Find the volume

of the solid obtained by revolving this region about the y-axis. [5]

Solution. (Using cylindrical shells.) Since we are revolving the region about a vertical
line, we should use x, the horizontal variiable, if we intend to use the method of cylindrical
shells. The cylindrical shell at x has radius equal to the distance from x to the y-axis (i.e.
x = 0), so r = x− 0 = x, and height equal to the distance between y =

√
x and y = 0, so

h =
√
x− 0 =

√
x. It follows that the volume of the solid is given by:

V =

∫ 1

0

2πrh dx =

∫ 1

0

2πx
√
x dx = 2π

∫ 1

0

x3/2 dx = 2π
x5/2

5/2

∣∣∣∣1
0

=
4

5
πx5/2

∣∣∣∣1
0

=
4

5
π · 15/2 − 4

5
π · 05/2 =

4

5
π − 0 =

4

5
π �

(Using washers.) Since we are revolving the region about a vertical line, we should use y,
the vertical variiable, if we intend to use the disk/washer method. The washer at y has
an outer radius given by the difference between x = 1, the right boundary of the original
region, and x = 0, since the axis of revolution is the y-axis, so R = 1 − 0 = 1. This
same washer has an inner radius given by the difference between x = y2, since the left
boundary of the region is y =

√
x, and x = 0, since the axis of revolution is the y-axis,

so r = y2 − 0 = y2. Note also that 0 ≤ y ≤ 1 over the given region. It follows that the
volume of the solid is given by:

V =

∫ 1

0

(
πR2 − πr2

)
dy = π

∫ 1

0

(
12 −

(
y2
)2)

dy = π

∫ 1

0

(
1− y4

)
dy

= π

(
y − y5

5

)∣∣∣∣1
0

= π

(
1− 15

5

)
− π

(
0− 05

5

)
=

4

5
π − 0 =

4

5
π �
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Quiz #7. Friday, 15 March. [15 minutes]

Determine whether each of the following series converges or diverges.

1.

∞∑
n=0

e−n [2.5] 2.

∞∑
n=0

1

1 + n2
[2.5]

Solutions. 1. (Geometric Series)
∞∑
n=0

e−n =
∞∑
n=0

1

en
=
∞∑
n=0

(
1

e

)n
is a geometric series

with first term a =

(
1

e

)0

= 1 and common ratio r =
1

e
. Since r =

1

e
< 1, the series

converges; in fact it adds up to
a

1− r
=

1

1− 1
e

=
e

e− 1
. �

1. (Integral Test) By the Integral Test,

∞∑
n=0

e−n converges or diverges exactly as the

improper integral

∫ ∞
0

e−x dx does, so we compute the integral. We will use the substitution

u = −x, so du = (−1) dx and thus dx = (−1) du, and keep the old limits, substituting
back in terms of x before using them:∫ ∞

0

e−x dx = lim
t→∞

∫ t

0

e−x dx = lim
t→∞

∫ x=t

x=0

eu (−1) du = lim
t→∞

(−1)eu|x=tx=0

= lim
t→∞

(−1)e−x
∣∣t
0

= lim
t→∞

[
(−1)e−t − (−1)e−0

]
lim
t→∞

[
1− e−t

]
= 1− 0 = 1 ,

since e−t → 0 as t → ∞. Since the improper integral in question converges to a real
number, the given series converges by the Integral Test. �

2. (Integral Test) By the Integral Test,
∞∑
n=0

1

1 + n2
converges or diverges exactly as the

improper integral
∫∞
0

1
1+x2 dx does, so we compute the integral. Recall that

d

dx
arctan(x) =

1

1 + x2
, and that arctan(x) has a horizontal asymptote of π

2 as one heads out to infinity.

∫ ∞
0

1

1 + x2
dx = lim

t→∞

∫ t

0

1

1 + x2
dx = lim

t→∞
arctan(x)|t0 = lim

t→∞
[arctan(t)− arctan(0)]

= lim
t→∞

[arctan(t)− 0] = lim
t→∞

arctan(t) =
π

2

Since the improper integral in question converges to a real number, the given series con-
verges by the Integral Test. �

2. (Basic Comparison Test and p-Test) Since 0 <
1

1 + n2
<

1

n2
for all n ≥ 1, and

∞∑
n=0

1

n2

converges by the p-Test because p = 2 > 1, the Basic Comparison Test tells us that
∞∑
n=0

1

1 + n2
converges as well. �
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Quiz #8. Friday, 22 March. [15 minutes]

Determine whether each of the following series converges or diverges.

1.

∞∑
n=2

(−1)n

nln(n)
[2.5] 2.

∞∑
n=0

3n

2n + 5n
[2.5]

Solutions. 1. (Alternating Series Test) First, note that n and ln(n), and hence also
1

nln(n)
, are positive when n ≥ 2. Since (−1)n alternates between positive and negative

with successive n, it follows that
(−1)n

nln(n)
alternates as well.

Second, since n+1 > n and ln(n+1) > ln(n) (because ln(x) is an increasing function)

for all n ≥ 2, it follows that

∣∣∣∣ (−1)n+1

(n+ 1)nln(n+ 1)

∣∣∣∣ =
1

(n+ 1)nln(n+ 1)
<

1

nln(n)
=

∣∣∣∣ (−1)n

nln(n)

∣∣∣∣
for all n ≥ 2.

Third, lim
n→∞

∣∣∣∣ (−1)n

nln(n)

∣∣∣∣ = lim
n→∞

1

nln(n)
= 0 since n→∞ and ln(n)→∞ as n→∞.

Since the given series satisfies the three conditions of the Alternating Series Test, it
converges. �

2. (Basic Comparison Test) Observe that the dominant terms in the numerator and
denominator are 3n and 5n, respectively, which suggests that the given series ought to

converge or diverge depending on whether
∞∑
n=0

3n

5n
does. The latter series does converge,

because it is a geometric series with common ratio r =
3

5
< 1.

For each n ≥ 0, we have 0 ≤ 3n

2n + 5n
≤ 3n

5n
=

(
3

5

)n
because making the denominator

smaller makes the fraction bigger). Since
∞∑
n=0

(
3

5

)n
converges, as noted above, it follows

by the Basic Comparison Test that
∞∑
n=0

3n

2n + 5n
converges as well. �

2. (Limit Comparison Test) Observe that the dominant terms in the numerator and
denominator are 3n and 5n, respectively, which suggests that the given series ought to

converge or diverge depending on whether
∞∑
n=0

3n

5n
does. The latter series does converge,

because it is a geometric series with common ratio r =
3

5
< 1.

We have that lim
n→∞

3n

2n+5n

3n

5n

= lim
n→∞

3n

2n + 5n
· 5
n

3n
= lim
n→∞

5n

2n + 5n
= lim
n→∞

5n

2n + 5n
·

1
5n

1
5n

=

lim
n→∞

1
2n

5n + 1
=

1

0 + 1
= 1 – note that 2n

5n =
(
2
5

)n → 0 as n→∞ because 0 < 2
5 < 1. Since

∞∑
n=0

3n

5n
converges, as noted above, it follows by the Limit Comparison Test that

∞∑
n=0

3n

2n + 5n

converges as well. �
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Quiz #9. Friday, 29 March. [10 minutes]

1. Determine for which values of x the series
∞∑
n=0

n3nxn converges. [5]

Solution. As usual for such problems, we first try the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)3n+1xn+1

n3nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)3x

n

∣∣∣∣ = 3|x| · lim
n→infty

n+ 1

n

= 3|x| · lim
n→∞

(
1 +

1

n

)
= 3(x| · (1 + 0) = 3|x|

It follows by the Ratio Test that the given series converges when 3|x| < 1, i.e. when

−1

3
< x <

1

3
, and diverges when 3|x| > 1, i.e. when x < −1

3
or x >

1

3
. When 3|x| = 1,

i.e. when x = ±1

3
, the Ratio Test tells us nothing, so we have to handle these cases in

other ways.

If x = +
1

3
, the series becomes

∞∑
n=0

n3n
(

1

3

)n
=
∞∑
n=0

n which diverges by the Divergence

Test because lim
n→∞

n =∞.

If x = −1

3
, the series becomes

∞∑
n=0

n3n
(
−1

3

)n
=
∞∑
n=0

(−1)nn which also diverges by

the Divergence Test because lim
n→∞

(−1)nn does not exist. (The even terms head off to ∞
and the odd terms head off to −∞.)

Combining the above, the given series converges for, and only for, −1

3
< x <

1

3
. �
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Quiz #10. Friday, 5 April. [15 minutes]

1. Find the Taylor series about a = 0 of f(x) =
1

(x+ 1)2
. [3]

2. Find the radius and interval of convergence of this Taylor series. [2]

Solutions. 1. Recall that the Taylor series of f(x) at a is the power series
∞∑
n=0

f (n)(a)

n!
(x−

a)n. In our case, we have a = 0, so we have to work out what f (n)(0) is for all n ≥ 0 when

f(x) =
1

(x+ 1)2
= (x+ 1)−2. We try brute force and pattern recognition:

n 0 1 2 3 · · ·
f (n)(x) (x+ 1)−2 −2(x+ 1)−3 6(x+ 1)−4 −24(x+ 1)−5 · · ·
f (n)(0) 1 −2 6 −24 · · ·

It’s not too hard to see that in general we have f (n)(x) = (−1)n(n + 1)!(x + 1)n+2 and
therefore f (n)(0) = (−1)n(n+ 1)!1n+2 = (−1)n(n+ 1)!. It follows that the taylor series at

a = 0 of f(x) =
1

(x+ 1)2
= (x+ 1)−2 is:

∞∑
n=0

f (n)(0)

n!
(x− 0)n =

∞∑
n=0

(−1)n(n+ 1)!

n!
xn =

∞∑
n=0

(−1)n(n+ 1)xn �

2. As usual, we try the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1 ((n+ 1) + 1)xn+1

(−1)n(n+ 1)xn

∣∣∣∣ = lim
n→∞

∣∣∣∣−(n+ 2)x

n+ 1

∣∣∣∣
= |x| lim

n→∞

n+ 2

n+ 1
·

1
n
1
n

= |x| lim
n→∞

1 + 2
n

1 + 1
n

= |x|1 + 0

1 + 0
= |x|

It follows by the Ratio Test that the Taylor series obtained above converges when |x| < 1
and diverges when |x| > 1, so its radius of convergence is R = 1.

To determine the interval of convergence we also need to check whether the series
converges or diverges at its endpoints, x = ±1:

x = −1: In this case the series is

∞∑
n=0

(−1)n(n+ 1)(−1)n =

∞∑
n=0

(−1)2n(n+ 1) =

∞∑
n=0

(n+ 1),

which diverges by the Divergence Test because lim
n→∞

(n+ 1) =∞ 6= 0.

x = +1: In this case the series is
∞∑
n=0

(−1)n(n+1)1n =
∞∑
n=0

(−1)n(n+1), which also diverges

by the Divergence Test because lim
n→∞

(−1)n(n + 1) does not exist. (The odd-

numbered terms head off to −∞ while the even-numbered terms head off to ∞.)

Putting all this together, it follows that the interval of convergence of this Taylor series is
(−1, 1). �
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