
Mathematics 1120H – Calculus II: Integrals and Series
Trent University, Summer 2021 (S62)

Assignment #3
Kosh says its a cinch.
Due on Friday, 9 July.

The functions cosh(x) = 1
2 (ex + e−x) and sinh(x) = 1

2 (ex − e−x), mentioned in the
lecture Integration by Parts II , are the basic hyperbolic functions, analogously to the basic
trigonometric functions, cos(x) and sin(x). (The other hyperbolic functions are defined in
terms of the basic ones in the same way that the other trigonometric functions are defined
in terms of the basic one.) Their names are pronounced “kosh” and “sinch”, respectively.

Since the basic hyperbolic functions are each others’ derivatives (with no gratuitous
negative signs) and satisfy a reasonably nice identity, namely cosh2(x) − sinh2(x) = 1
(sadly with a negative), they are sometimes used in place of the trigonometric functions
when making substitutions. They have other uses in mathematics as well: they are needed
to help do trigonometry in certain curved spaces, they arise in solving various differential
equations (see question 3 below), and they turn out to be intimately related to the standard
trigonometric functions. (For example, cos(x) = cosh(ix) and cosh(x) = cos(ix), where
i =
√
−1.)

1. Verify that cosh2(x)− sinh2(x) = 1 for all x. [1]

Solution. Here goes:
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2. Work out what the inverse function of sinh(x), let’s call it arcsinh(x), is in terms of
more common functions. [3]

Solution. Since y = arcsinh(x) ⇐⇒ x = sinh(y) =
ey − e−y

2
, we need to solve the

latter equation for y. Here we go:

x = sinh(y) ⇐⇒ x =
ey − e−y

2
⇐⇒ 2x = ey − e−y = ey − 1

ey

⇐⇒ 2xey = (ey)
2 − 1 ⇐⇒ (ey)

2 − 2xey − 1
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At the last step above we have reached a quadratic equation in the expression ey, so we
apply the quadratic formula.

ey =
−(−2x)±

√
(−2x)2 − 4 · 1 · (−1)

2 · 1
=

2x±
√

4x2 + 4

2

=
2x± 2

√
x2 + 1

2
= x±

√
x2 + 1

Since ey > 0 for all values of y and x −
√
x2 + 1 < 0 for all values of x, we can discard

the “solution” ey = x −
√
x2 + 1 to the original quadratic equation. It follows that ey =

x+
√
x2 + 1, and thus

arcsinh(x) = y = ln
(
x+

√
x2 + 1

)
.

Note that since x +
√
x2 + 1 > 0 for all x, as |x| <

√
x2 + 1 for all x, we have that

arcsinh(x) = ln
(
x+
√
x2 + 1

)
is defined for all x. �

3. Suppose y = f(x) is a functions satisfying the the differential equation
d2y

dx2
=√

1 +

(
dy

dx

)2

, and also satisfies the initial conditions f(1) = f(−1) = cosh(1). Show

that it must be the case that f(x) = cosh(x). [6]

Note the first: It is easy to check that cosh(x) satisfies the differential equation
and the initial conditions. Why is it the only function that does?

Hint: Let z =
dy

dx
, so

dz

dx
=
d2y

dx2
. Rewrite the equation in terms of z, move everything

involving x to one side of the new equation and everything involving z to the other),
and integrate to solve for z. Then get y by . . .

Note the second: This differential equation would arise if you suspended a certain
length of chain from the points specified by the initial conditions and let it hang under
the influence of gravity, “down” being the negative y direction, and asked what shape
the chain would have if no other forces were in play.

Solution. Following the hint, let z =
dy

dx
, so

dz

dx
=

d2y

dx2
. The given equation

d2y

dx2
=√

1 +

(
dy

dx

)2

then becomes
dz

dx
=
√

1 + z2. We will try to solve this equation for z as a

function of x, and then integrate z =
dy

dx
to solve for y. The initial conditions will be used

after that to pin down the constants of integration as much as we can.

The basic techniques we will use to solve the differential equation
dz

dx
=
√

1 + z2 is

separation of variables: treating
dz

dx
as a fraction, put everything involving x on one side
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and everything involving z on the other and integrate each side with respect to the variable
appearing on that side. This is, incidentally, one of the several places in calculus where

you get away with treating an expression like
dz

dx
as if it really were a fraction, which

is generally a no-no. The expression is officially shorthand for a certain limit , after all.
It really upsets pure mathematicians like myself that this works! Engineers, physicists,
applied mathematicians, and such, just dont care because it works . . . :-) Anyway, this
first part is pretty easy:

dz

dx
=
√

1 + z2 =⇒ dz√
1 + z2

= dx =⇒
∫

1√
1 + z2

dz =

∫
1 dx

One side of the integral equation is pretty trivial to integrate; for the other side, we use
the trigonometric substitution z = tan(θ), so dz = sec2(θ) dθ and sec(θ) =

√
1 + z2. Here

we go:

x =

∫
1 dx =

∫
1√

1 + z2
dz =

∫
1√

1 + tan2(θ)
sec2(θ) dθ =

∫
1√

sec2(θ)
sec2(θ) dθ

=

∫
sec(θ) dθ = ln (tan(θ) + sec(θ)) + C = ln

(
z +

√
1 + z2

)
+ C

We now have to solve x = ln
(
z +
√

1 + z2
)

+ C for z in terms of x:

x = ln
(
z +

√
1 + z2

)
+ C =⇒ x− C = ln

(
z +

√
1 + z2

)
=⇒ ex−C = eln(z+

√
1+z2) = z +

√
1 + z2

=⇒ ex−C − z =
√

1 + z2 =⇒
(
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)2
=
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)2

=⇒
(
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)2 − 2ex−Cz + z2 = 1 + z2

=⇒
(
ex−C
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(
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+ 1

=⇒ z =
−
(
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=

(
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(
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=
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2

=⇒ z =
ex−C − e−(x−C)

2
= sinh(x− C)

Thus dy
dx = z = sinh(x−C), where C is an unknown constant. We integrate this to recover

the solution y of the given differential equation as a function of x, using the substitution
u = x−C, so du = dx. Since another constant of integration will be appearing and we are
already using C, the new constant of integration will be called K. Recall that cosh and
sinh are each other’s derivatives, and hence also each other’s antiderivatives.

y =

∫
dy

dx
dx =

∫
sinh(x− C) dx =

∫
sinh(u) du = cosh(u) +K = cosh(x− C) +K
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It remains to find the values of the constants C and K. This is where we – finally!
– use the initial conditions that when x = ±1, we have y = cosh(1). we will also exploit

the facts that cosh(−t) =
e−t + e−(−t)

2
=
et + e−t

2
= cosh(t) for all t, and that cosh(t) is

decreasing for t < 0 and increasing for t > 0, as is obvious from its graph:

Of course, one could also get the latter fact by analyzing the behaviour of the derivative.
First, observe that when x = ±1, we have cosh(1− C) + K = cosh(1) = cosh(−1) =

cosh(−1−C)+K. Subtracting K from both ends get us that cosh(1−C) = cosh(−1−C).
Since cosh is an even function that is decreasing before 0 and increasing after 0, cosh(a) =
cosh(b) is only possible when a = ±b, so it follows that either 1 − C = −1 − C or
1 − C = −(−1 − C) = 1 + C. The equation 1 − C = −1 − C makes no sense because if
you add C to both sides you would get that 1 = −1. The latter equation we can solve for
C: 1− C = 1 + C =⇒ 2C = 0 =⇒ C = 0. Thus y = cosh(x− 0) +K = cosh(x) +K.

Second, since y = cosh(x) +K and y = cosh(1) when x = 1, we have that cosh(1) =
cosh(1) +K, from which it follows immediately that K = 0.

Thus if y = f(x) is the solution to the given differential equation with the given initial
conditions, we must have that y = f(x) = cosh(x). Whew! �

[Total = 10]
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