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Solutions to Assignment #3
Exponential and Differential

Just in case you haven’t seen it before, or have forgotten about it, the notation n! is
a shorthand for the product of the first n positive integers, that is:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

Thus 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2 · 1 = 6, 4! = 4 · 3 · 2 · 1 = 24, and so on. n! grows very
quickly, faster than any exponential function with a constant base. (Stirling’s Formula

tells us that when n is large, n! is approximately
√

2nπ · n
n

en
.)

This notation is extended to n = 0 by defining 0! = 1. This is mainly done to make
various general formulas and expressions involving n! (including the sum in question 2
below) behave nicely when n = 0. One could also justify this by observing that n! counts
the number of ways one can arrange n distinct objects in a row, and that there is only one
way of arranging no objects at all . . .

1. Suppose y = f(x) satisfies the equation
dy

dx
= y. Show that f(x) = Kex for some

constant K. [5]

Solution. First, note that y = f(x) = 0 for all x is a solution to the given differential
equation because d

dx0 = 0. Then f(x) = Kex = 0ex = 0 for K = 0.
Now suppose that y = f(x) is differentiable and not equal to 0 for some value(s) of x.

At least for such values, we can then rearrange the differential equation as follows,

dy

dx
= y =⇒ 1

y
· dy
dx

= 1,

and then compute the antiderivative of both sides. The right-hand side is easy:
∫

1 dx =
x+ C by the Power Rule.

For the left-hand side, a quick and dirty approach would be to do the following:∫
1

y
· dy
dx

dx =

∫
1

y
dy = ln(y) +B

(We use B because we’ve already used C for the generic constant of integration on the

right-hand side.) This is one of those cases where one gets away with treating
dy

dx
as if it

were really a fraction.
A nominally more careful (and mathematically respectable :-) approach would be to

treat this as an opportunity for a trivial subsitution u = y, so du =
dy

dx
dx:∫

1

y
· dy
dx

dx =

∫
1

u
du = ln(u) +B = ln(y) +B
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Respectably or otherwise, we have arrived at ln(y)+B = x+C. Solving this equation
for y yields:

ln(y) +B = x+ C =⇒ ln(y) = x+ C −B =⇒ y = eln(y) = ex+C−B = eC−Bex

Setting K = eC−B means that y = f(x) = Kex has the desired form. Note that making
K = −eC−B works too, since the negative sign will pass through the derivative and hence
appear on both sides of the differential equation. (Alternatively, one could exploit the fact

that ln (|y|) is a more general antiderivative of
1

y
and eventually get K = ±eC−B .)

Thus, whether or not y = f(x) is always 0, if it is a solution of the differential equation
dy

dx
= y, we must have y = f(x) = Kex for some constant K. �

2. Suppose f(x) =
∞∑

n=0

xn

n!
= 1 +x+

x2

2
+
x3

6
+ · · · . Use 1 (and just a bit more) to show

that f(x) = ex. [5]

Note. For the sake of this assignment, you may assume that the sum
∞∑

n=0

xn

n!
makes sense

no matter what the value of x is. We’ll see exactly what this means and how to check it
is so later in the course. For now, just think of the sum as a polynomial of infinite degree.

Solution. One thing we can do with polynomials is differentiate them term-by-term. Fol-
lowing the hint and thinking of the series as a polynomial of infinite degree, we differentiate
it term-by=term too:

f ′(x) =
d

dx

( ∞∑
n=0

xn

n!

)
=

d

dx

(
1 + x+

x2

2
+
x3

6
+
x4

24
+ · · ·

)

=
d

dx

(
x0

0!

)
+
∞∑

n=1

d

dx

(
xn

n!

)
=

d

dx
1 +

d

dx
x+

d

dx

(
x2

2

)
+

d

dx

(
x3

6

)
+

d

dx

(
x4

24

)
+ · · ·

= 0 +
∞∑

n=1

nxn−1

n!
= 0 + 1 +

2x

2
+

3x2

6
+

4x3

24
+ · · ·

=
∞∑

n=1

xn−1

(n− 1)!
= 1 + x+

x2

2
+
x3

6
+ · · · =

∞∑
k=0

xk

k!
= f(x)

Thus y = f(x) is equal to its derivative, i.e.
dy

dx
= y, so 1 tells us that f(x) = Kex for

some constant K. Since f(0) =

∞∑
n=0

0n

n!
= 1 + 0 +

02

2
+

03

6
+ · · · = 1 + 0 = 1 (however many

0s you add, you’re not going to get much :-), it follows that K = K · 1 = Ke0 = f(0) = 1.

Thus f(x) = ex, i.e. ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+ · · · , as desired. �
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