
Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals
Trent University, Summer 2018

Solutions to the Practice Final Examination

Time: Whatever, whenever. Brought to you by Stefan B�lan�k.

Instructions: Do parts A, B, and C, and, if you wish, part D. Show all your work and
justify all your answers. If in doubt about something, ask!

Aids: Any calculator; (all sides of) one aid sheet; one (1) brain (no neuron limit).

Part A. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any four (4) of a–f. [20 = 4 × 5 each]

a. y =

(
x+ 1

x− 1

)2

b. y =

∫ x

0

tet
2

dt c.
y = − cos(t)
x = sin(t)

d. ln(xy) = 0 e. y = sin
(√
x
)

f. y = xπex

Solutions. a. Power, Chain, and Quotient Rules:

dy

dx
=

d

dx

(
x+ 1

x− 1

)2

= 2

(
x+ 1

x− 1

)
· d
dx

(
x+ 1

x− 1

)
= 2

(
x+ 1

x− 1

)
·
[
d
dx (x+ 1)

]
(x− 1)− (x+ 1)

[
d
dx (x− 1)

]
(x− 1)2

= 2

(
x+ 1

x− 1

)
· 1 · (x− 1)− (x+ 1) · 1

(x− 1)2
= 2

(
x+ 1

x− 1

)
· −2

(x− 1)2
=
−4(x+ 1)

(x− 1)3
�

b. Using the Fundamental Theorem of Calculus:
dy

dx
=

d

dx

(∫ x

0

tet
2

dt

)
= xex

2

. �

c.
dy

dx
=

dy
dt
dx
dt

=
d
dt (− cos(t))

d
dt sin(t)

=
− (− sin(t))

cos(t)
=

sin(t)

cos(t)
= tan(t) = −x

y
. �

d. ln(xy) = 0 ⇒ xy = 1 ⇒ y =
1

x
⇒ dy

dx
=

d

dx
x−1 = (−1)x−2 = − 1

x2
. �

e. Chain and Power Rules:

dy

dx
=

d

dx
sin
(√
x
)

= cos
(√
x
)
· d
dx

√
x = cos

(√
x
)
· d
dx
x1/2

= cos
(√
x
)
· 1

2
x−1/2 =

cos (
√
x )

2
√
x

�

f. Product and Power Rules:

dy

dx
=

d

dx
(xπex) =

[
d

dx
xπ
]
ex + xπ

[
d

dx
ex
]

= πxπ−1ex + xπex = xπ−1ex (π + x) �
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2. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫
e
√
t

2
√
t
dt b.

∫ π/2

0

x cos(x) dx c.

∫ 1

0

arctan(y) dy

d.

∫ ln(2)

0

e−y dy e.

∫ √π
0

z cos
(
z2
)
dz f.

∫ π/4

0

tan2(z) dz

Solutions. a. We will use the substitution u =
√
t, so du = 1

2
√
t
dt:∫

e
√
t

2
√
t
dt =

∫
eu du = eu + C = e

√
t + C �

b. We will use integration by parts with u = x and v′ = cos(x), so u′ = 1 and v = sin(x):∫ π/2

0

x cos(x) dx = x sin(x)|π/20 −
∫ π/2

0

1 sin(x) dx

=
[π

2
sin
(π

2

)
− 0 sin(0)

]
− (− cos(x))|π/20

=
[π

2
· 1− 0 · 0

]
+
[
cos
(π

2

)
− cos(0)

]
=
π

2
+ [0− 1] =

π

2
− 1 �

c. We’ll use integration by parts with u = arctan(y) and v′ = 1, so u′ = 1
1+y2 and v = y.

The remaining integral will be done using the substitution w = 1 + y2, so dw = 2y dy, and

thus y dy = 1
2 dw, and

y 0 1
w 1 2

.

∫ 1

0

arctan(y) dy =

∫ 1

0

uv′ dy = uv|10 −
∫ 1

0

u′v dy = y arctan(y)|10 −
∫ 1

0

y

1 + y2
dy

= [1 arctan(1)− 0 arctan(0)]−
∫ 2

1

1

w

1

2
dw =

[π
4
− 0
]
− 1

2
ln

(
1

w

)∣∣∣∣2
1

=
π

4
−
[

1

2
ln

(
1

2

)
− 1

2
ln

(
1

1

)]
=
π

4
− 1

2
ln

(
1

2

)
�

d. We will use the substitution s = −y, so ds = −1 dy and dy = −1 ds, and
y 0 ln(2)

s 0 −ln(2) .∫ ln(2)

0

e−y dy =

∫ −ln(2)
0

es (−1) ds = −es|−ln(2)0

= −e−ln(2) −
(
−e0

)
= − 1

eln(2)
− (−1) = −1

2
+ 1 =

1

2
�

e. We’ll use the substitution w = z2, so dw = 2z dz and thus z dz = 1
2 dw, and

z 0
√
π

w 0 π
.

∫ √π
0

z cos
(
z2
)
dz =

∫ π

0

cos(w)· 1
2
dw =

1

2
sin(w)

∣∣∣∣π
0

=
1

2
sin(π)− 1

2
sin(0) = 0−0 = 0 �

2



f. We will use the trigonometric identity tan2(z) = sec2(z)− 1.∫ π/4

0

tan2(z) dz =

∫ π/4

0

[
sec2(z)− 1

]
dz = [tan(z)− z]|π/40

=
[
1− π

4

]
− [0− 0] = 1− π

4
�

3. Do any four (4) of a–g. [20 = 4 × 5 each]

a. Let f(x) = x2 + 1 and compute f ′(1) using the limit definition of the derivative.

b. Use the ε− δ definition of limits to verify that lim
x→0

(2x− 1) = −1.

c. Compute lim
n→∞

n2

en
.

d. Sketch the region between y = x2 and y =
√
x, 0 ≤ x ≤ 1, and find its area.

e. Find the equation of the tangent line to y = cos(x) at x =
π

4
.

f. Find the number b such that

∫ b

0

(2x+ 1) dx = 2.

Solutions. a. Here goes:

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim
h→0

[
(1 + h)2 + 1

]
−
[
12 + 1

]
h

= lim
h→0

[
1 + 2h+ h2 + 1

]
− 2

h
= lim
h→0

2h+ h2

h
= lim
h→0

(2 + h) = 2 + 0 = 2 �

b. We need to verify that for every ε > 0, there is some δ > 0, such that if |x − 0| < δ,
then |(2x− 1)− (−1)| < ε. As usual, we will try to reverse-engineer the necessary δ from
ε. Suppose an ε > 0 is given. Then

|(2x− 1)− (−1)| < ε⇔ |2x− 1 + 1| < ε⇔ |2x| < ε⇔ |x| < ε

2
⇔ |x− 0| < ε

2
,

so δ =
ε

2
will do the job. Note that every step of our reverse-engineering process above is

reversible, so if |x− 0| < δ =
ε

2
, then |(2x− 1)− (−1)| < ε. �

c. Here goes, using l’Hôpital’s Rule twice:

lim
n→∞

n2

en
= lim
x→∞

x2

ex
→∞
→∞ = lim

x→∞

d
dxx

2

d
dxe

x
= lim
x→∞

2x

ex
→∞
→∞

= lim
x→∞

d
dx2x
d
dxe

x
= lim
x→∞

2

ex
→ 2
→∞ = 0 �
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d. Here are the curves, as plotted by Maple:
> plot([[sqrt(t),t,t=0..1],[t^2,t,t=0..1]]s)

The two curves intersect at x = 0 and x = 1; between these two points,
√
x ≥ x2. It

follows that the area between the curves is given by:

Area =

∫ 1

0

(√
x− x2

)
dx =

∫ 1

0

(
x1/2 − x2

)
dx =

(
2

3
x3/2 − 1

3
x3
)∣∣∣∣1

0

=

(
2

3
13/2 − 1

3
13
)
−
(

2

3
03/2 − 1

3
03
)

=
2

3
− 1

3
=

1

3
�

e.
dy

dx
=

d

dx
cos(x) = − sin(x), so the slope of the tangent line to y = cos(x) at x =

π

4
is

m = − sin
(π

4

)
= − 1√

2
. The line thus has an equation of the form y = − 1√

2
x + b. To

determine b, we note that when x =
π

4
, we have y = cos

(π
4

)
=

1√
2

, so
1√
2

= − 1√
2
· π
4

+b.

It follows that b =
1√
2

+
1√
2
· π

4
=

1√
2

(
1 +

π

4

)
, and thus the equation of the tangent line

is y = − 1√
2
x+

1√
2

(
1 +

π

4

)
. �

f. Observe that: ∫ b

0

(2x+ 1) dx =
(
x2 + x

)∣∣b
0

=
(
b2 + b

)
−
(
02 + 0

)
b2 + b

We therefore need to find the number b satisfying the equation b2+b = 2, i.e. b2+b−2 = 0.
Using the quadratic equation, it follows that:

b =
−1±

√
12 − 4 · 1 · (−2)

2 · 1
=
−1±

√
9

2
=
−1± 3

2
=

{ 2
2

− 4
2

=

{
1

−2

There are thus two possible answers, b = 1 and b = −2. Note that a definite integral may
still make sense even if the “lower” limit is actually greater that the “upper” limit of the
integral. �
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4. Find the domain and any and all intercepts, vertical and horizontal asymptotes, and

maximum, minimum, and inflection points of f(x) = e−x
2

, and sketch its graph.

Solution. We’ll run through the usual checklist and then graph f(x) = e−x
2

:

i. Domain. Note that both g(x) = ex and h(x) = −x2 are defined and continuous for all

x. It follows that f(x) = g (h(x)) = e−x
2

is also defined and continuous for all x. Thus
the domain of f(x) is all of R.

ii. Intercepts. Since g(x) = ex is never 0, f(x) = e−x
2

can never equal 0 either, so it has

no x-intercepts. For the y-intercept, simply note that f(0) = e−0
2

= e0 = 1.

iii. Vertical asymptotes. f(x) = e−x
2

is defined and continuous for all x, so it cannot have
any vertical asymptotes.

iv. Horizontal asymptotes. We check for horizontal asymptotes:

lim
x→∞

e−x
2

= lim
x→∞

1

ex2 = 0 and lim
x→−∞

e−x
2

= lim
x→−∞

1

ex2 = 0 ,

since ex
2 → ∞ as x2 → ∞, which happens as x → ±∞. Thus f(x) = e−x

2

has the
horizontal asymptote y = 0 in both directions.

v. Maxima and minima. f ′(x) = e−x
2 d

dx

(
−x2

)
= −2xe−x

2

, which equals 0 exactly when

x = 0 because −2e−x
2 6= 0 for all x. Note that this is the only critical point. Since

e−x
2

> 0 for all x, f ′(x) = −2xe−x
2

> 0 when x < 0 and < 0 when x > 0, so f(x) = e−x
2

is increasing for x < 0 and decreasing for x > 0. Thus x = 0 is an (absolute!) maximum
point of f(x), which has no minimum points. We summarize all this in the usual table:

x (−∞, 0) 0 (0,∞)
f ′(x) + 0 1
f(x) ↑ max ↓

vi. Inflection points.

f ′′(x) =
d

dx

(
−2xe−x

2
)

= −2e−x
2

− 2x
d

dx

(
−x2

)
= −2e−x

2

− 2x ·
(
−2xe−x

2
)

=
(
4x2 − 2

)
e−x

2

,

which equals 0 exactly when 4x2 − 2 = 0, i.e. when x = ± 1√
2
, because e−x

2 6= 0 for

all x. Since e−x
2

> 0 for all x, f ′′(x) =
(
4x2 − 2

)
e−x

2

> 0 exactly when 4x2 − 2 > 0,
i.e. when |x| > 1√

2
, and is < 0 exactly when 4x2 − 2 < 0, i.e. when |x| < 1√

2
. Thus

f(x) = e−x
2

is concave up on
(
−∞,− 1√

2

)
∪
(

1√
2
,∞
)

and concave down on
(
− 1√

2
, 1√

2

)
.

Thus f(x) = e−x
2

has two inflection points, at x = ± 1√
2
. We summarize all this in the

usual table:

x
(
−∞,− 1√

2

)
− 1√

2

(
− 1√

2
, 1√

2

)
1√
2

(
1√
2
,∞
)

f ′′(x) + 0 − 0 +
f(x) ^ infl. pt. _ infl. pt. ^
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vii. Graph. Cheating just a wee bit, this graph was plotted using a program called
KAlgebra.

�

Part B. Do any two (2) of 5–7. [28 = 2 × 14 each]

5. What is the maximum area of a rectangle with its base on the x-axis and which has
its two top corners on the semicircle y =

√
16− x2?

Solution. A little reflection about this setup, preferably with a peek at a sketch,

will show that the base of such a rectangle runs from (−x, 0) to (x, 0), while the right side
runs from (x, 0) to

(
x,
√

16− x2
)
. The rectangle thus has width x− (−x) = 2x and height√

16− x2−0 =
√

16− x2, and thus has area A = 2x
√

16− x2. Note that areas should not
be negative. Since a rectangle of width 0, which occurs when x = 0, has area 0, we must
have 0 ≤ x, and since a rectangle of height 0, which occurs when x = 4, has area 0 too, we
must also have x ≤ 4. This analysis also tells us what happens at the endpoints, and that
if there is a single critical point in [0, 4], it must give a maximum. For critical points:

dA

dx
=

d

dx
2x
√

16− x2 =

(
d

dx
2x

)
·
√

16− x2 + 2x ·
(
d

dx

√
16− x2

)
= 2
√

16− x2 + 2x · 1

2
√

16− x2
·
(
d

dx

(
16− x2

))
= 2
√

16− x2 +
x√

16− x2
· (−2x) = 2

√
16− x2 − 2x2√

16− x2
dA

dx
= 0 =⇒ 2

√
16− x2 − 2x2

2
√

16− x2
= 0

=⇒ 2
√

16− x2 ·
√

16− x2
2

− 2x2

2
√

16− x2
·
√

16− x2
2

= 0

=⇒ 16− x2 − 2x2 = 16− 3x2 = 0 =⇒ x2 =
16

3
=⇒ x = ± 4√

3
≈ ±2.31

x =
4√
3

is the only critical point in the interval [0, 4], so it must give the maximum. The

maximum area of a rectangle meeting the given specifications is therefore A = 2 · 4√
3
·√

16−
(

4√
3

)2

=
8√
3
·
√

16− 16

3
=

8√
3
·
√

32

3
=

8√
3
· 4
√

2√
3

=
32
√

2

3
≈ 15.1. Whew! �
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6. Meredith, carrying a lamp 1.5 m above the ground, walks at 1 m/s along level ground
directly toward a 1 m tall post at night. How is the length of the shadow cast by the
post in the lamplight changing at the instant that the lamp is 2 m from the post?

Solution. Let x be the horizontal distance between the lamp and the post, and let s be
the length of the shadow, as in the slightly modified diagram above. We are given that
dx

dt
= −1. By the similarity of the triangles involved,

x+ s

1.5
=
s

1
, so x + s = 1.5s =

3

2
s

and so x =
1

2
s and s = 2x. It follows that

ds

dt

∣∣∣∣
x=2

= 2
dx

dt

∣∣∣∣
x=2

= 2(−1) = −2 m/s. Thus

the length of the shadow is decreasing at a rate of 2 m/s at the instant in question. Note
that it changes at the same constant rate at every other instant, too. �

7. Sand is poured onto a level floor at the rate of 60 L/min. It forms a conical pile whose
height is equal to the radius of the base. How fast is the height of the pile increasing
when the pile is 2 m high? [The volume of a cone of height h and base radius r is
1
3πr

2h.]

Solution. First, we’ll use metres as out primitive unit; note that 1 L = 0.001 m3, so
60 L/min = 0.06 m3/min.

Since the height of the conical pile is always equal to the radius of the base, i.e. h = r,

the volume of the cone is given by V =
1

3
πr2h =

1

3
πh2h =

πh3

3
. It follows that

0.06 =
dV

dt
=

d

dt

π

3
h3 =

(
d

dh

π

3
h3
)
· dh
dt

= πh2 · dh
dt
,

so
dh

dt
=

0.06

πh2
at any given instant. Plugging in h = 2 m then gives

dh

dt

∣∣∣∣
h=2 m

=
0.06

π22
=

0.06

4π
=

0.015

π
.

If it matters,
0.015

π
m/min =

1.5

π
cm/min ≈ 0.48 cm/min. �

[Total = 100]
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Part C. Bonus problems! If you feel like it and have the time, do one or both of these.

©©©.
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · · = π2

6
. Assuming this is so [which it is], what

is the series
∞∑
k=0

1

(2k + 1)2
= 1 +

1

9
+

1

25
+ · · · equal to? [1]

Solution. A little algebra goes a long way here. Since

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · · =

(
1 +

1

9
+

1

25
+ · · ·

)
+

(
1

4
+

1

16
+

1

36
+ · · ·

)

=

(
1 +

1

9
+

1

25
+ · · ·

)
+

1

4

(
1 +

1

4
+

1

9
+ · · ·

)
=
∞∑
k=0

1

(2k + 1)2
+

1

4

∞∑
n=1

1

n2
,

it follows that
∞∑
k=0

1

(2k + 1)2
=

3

4

∞∑
n=1

1

n2
=

3

4
· π

2

6
=
π2

8
. �

⊙⊙⊙
. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. None given! ◦◦^

Have some fun this summer,
and drop by next year to tell me about it!
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